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Abstract— This paper studies the infinite-horizon sensor tree based on certain properties of the Riccati recursiBhs [
scheduling problem for linear Gaussian processes with linear [9].
measurement functions. Several important properties of the The methods in the first category are often easy to

optimal infinite-horizon schedules are derived. In particular, . | t but id ¢ for th I
it is proved that under some mild conditions, both the optimal Implement, but provide no guarantees for the overall es-

infinite-horizon average-per-stage cost and the corresponding timation performance. The “embedding” approach in the
optimal sensor schedules are independent of the covariance second category is a common trick to tackle complex dis-

ma_trix Qf the initial state. It is a_lso proved_tha_t the optimal crete optimization or optimal control problems [10], [11].
estimation cost can be approximated arbitrarily closely by - 1he regylting relaxed schedule can often be interpreted as

a periodic schedule with a finite period, and moreover, the the ti uf . “orobabilities” f .
trajectory of the error covariance matrix under this periodic € Ume-average ‘frequencies or "probabiliies” Tor ng

schedule converges exponentially to a unique limit cycle. These different sensors. It has been recently proved [7] that, in
theoretical results provide valuable insights about the problem continuous time, the performance of the optimal relaxed

and can be used as general guidelines in the design and analysisschedule can be approximated with arbitrary accuracy by a
of various infinite-horizon sensor scheduling algorithms. discrete schedule through fast switchings. This is analsgo
to the result derived in [11] for solving the optimal control
problem of switched systems using embedding. However, in
The sensor scheduling problem tries to find a schedufiscrete time, the result no longer holds as the switching
over a certain time horizon to activate/deactivate a subseate is fixed; in this case, the relaxed schedule can only
of available sensors to improve the estimation performand¥ implemented probabilistically [6], resulting in a rando
and reduce the estimation cost (e.g. energy consumption aggheduling of the sensors with random error performances.
communication overheads). It has numerous applications #he pruning methods in the third category make essential use
various engineering fields [1], [2], [3]. of the monotonicity and concavity properties of the Riccati
Previous research has mainly focused on the finite-horizdRapping (See Lemma 1) to obtain conditions under which
sensor scheduling problem for linear Gaussian processks wihe exploration of certain branches can be avoided without
linear measurement functions. In this case, for a givensendosing the optimal schedule. In our earlier paper [8], an
schedule, the optimal state estimate can be obtained usi@fjcient algorithm was proposed to prune out not only the
the Kalman filter and the corresponding error covarianc@on-optimal branches but also less important ones to furthe
matrix can be computed recursively using the differencéeduce the complexity. Some error bounds associated with
Riccati recursion. Thus, a straightforward way to solves thithis pruning algorithm have also been derived in [12].
scheduling problem is to enumerate all the possible finite- In recent years, the sensor scheduling problem for nonlin-
horizon schedules [1]. The complexity of such an approac®ar stochastic systems with nonlinear measurement fursctio
grows exponentially fast as the horizon length increaseBave also been extensively studied [3], [13], [14]. The
Various methods have been proposed in the literature B§oblem is often formulated as a Markov decision problem
tackle this challenge. These methods can be roughly divid@hd solved using dynamic programming, where the value
into the following three categories: (i) methods that foons functions are computed either through gridding the state
certain simple special classes of schedules, such as myopRace or through sampling the state space using Monte Carlo
schedules that only consider immediate performance at eaginulations. The approach applies to virtually all types of
time step instead of the overall performance over the wholé/namical processes, but its complexity is prohibitive for
horizon [4], [5]; (i) methods that “embed” discrete schidu high state dimensions.
into a larger class of schedules with continuously-vagabl Different from most previous research, this paper studies

sensor indices [6], [7]; (i) and methods that prune thesea the infinite-horizon sensor scheduling problem for diseret
time linear Gaussian processes observed by linear sensors.
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I. INTRODUCTION



der some mild conditions, both the optimal infinite-horizorthe set of all the sequences of sensor indices of lehgtAn
average-per-stage cost and the corresponding optimabrsenslementoc € MY is called anN-horizon sensor schedule
schedule are independent of the covariance matrix of thehe set of all infinite-horizon sensor schedules is denoyed b
initial state. It is also proved that the optimal estimatiorM°. An infinite-horizon schedule € M is called periodic
cost can be approximated arbitrarily closely by a periodiwith a periodl € Z, if o(t) = o(t+1) forall t € Z... Under
schedule with a finite period, and moreover, the trajectdry @ given sensor scheduec M, the measurement sequence
the error covariance matrix under this periodic schedute cois determined by:

verges exponentially fast to a unique limit cycle, regassle

of the initial covariance matrix. These theoretical proiesr Y(t) = Yo()(t) = Coyx(t) + vo(r) (1), VE € Zy.
provide_us valuable insigh_t into the infinite-horizo_n SENSOFqr eacht; < £y < oo, denote byi? (t2]t1) the minimum
scheduling problem and will be useful for developing algo'mean-square error (MMSE) estimate oft,) given the

rithms. In addition, the existence of a periodic S”bOptim%easurements{y(O) y(t1)}, the initial covariancey

schedule justifies the experimental results of many finiteénd the sensor schedutec M. Define the predictor error
horizon scheduling algorithms [8], [15] that yield periodi e (1]t — 1) by

schedules for relatively large horizons.

The rest of the paper is organized as follows. The infinite- e7(tt—1) =x(t) — Az (t — 1|t — 1),
horizon sensor scheduling problem is formulated in Sec- . . _ o
tion Il. Some important properties of the difference Riccat2nd letx7(¢o) be its covariance matrix. When no ambiguity
recursion are derived in Section Ill. These propertieskeat arises, we may drop its dependence on the initial covariance
used in Section IV to prove various properties of the optimdPatrix and simply writeX7. For any@ < A, denote by
solutions of the infinite-horizon sensor scheduling proble Xi(Q) the Kalman gain associated with sengax M and
Finally, some concluding remarks are given in Section V. Matrix @, which is given by:

Notation: Let A be the semi-definite cone, namely, the _ . T (v AAT oy —1
set of all the positive semidefinite matrices. Denote by K@) = QCH(GQE + 7). 3)
Amin(+) @ndAmax(-) the smallest and the largest eigenvaluesBy a standard result of the linear estimation theory, thererr
respectively, of a given matrix ipd. Let R, andZ, be the covariance of the predictor can be updated recursivelygusin
set of nonnegative real numbers and integers, respectivelje Riccati recursion:

Let || - || be the standard Euclidean norm of vectors as well .
as the corresponding induced norm of matrices. Denote by i1 = ®“ + AX{A
| -] the cardinality of a given set. For agy. € A andr > 0, Az AT o ~T » \ ! o AT
define B(¢.;7) == {¢ € A: ||¢ — ¢.|| < r}. Denote byI, AR Co) (O"(”Et Cow + (I)"(”) CowXr A7 (4)
the identity matrix of dimensiom. For eachi € M andQ < A, define
Il. PROBLEM FORMULATION T
_ o T , Ai(Q) £ A— AK;(Q)C;. ©)
Consider the following linear time-invariant stochastic
system: Then, the Riccati recursion (4) can also be written as ([16])
o w A o o A o\1T
z(t+1)=Az(t) +w(t), t € Zy, (1) B9 =0 4 [Ao)(Z7)] - 27 - [Aor) (27)]

where z(t) € R" is the state of the system and(t) is + A [Kowy(27)] @54y - [Kg(t)(z;?)}T-AT. (6)

the process noise. The initial state[0), is assumed to be . .
Gaussian with zero mean and covariance matrix i.e., For any finite integerV, the performance of av-horizon

2(0) ~ N(0, ). There areM different sensors attached SENSOT schedule € M can be evaluated according to the
) . . . . .
to the process. At each time step, we assume that only off§@! estimation error defined by:

of the M sensors is available to take measurements. The N
measurement of thé” sensor is given by: In (o5 ¢0) & Ztr(zg(qbo)), (7)
yi(t) = Cyz(t) + vilt), t € Zy., ) =

or according to the average-per-stage estimation erranetkfi
where y;(t) € RP and v;(t) € RP are the measurement by:

output and measurement noise of tif& sensor at time
t, respectively. We assume that the process noise and all In (o3 do) 2 iJN(O-;(bO). (8)
the measurement noises are mutually independent Gaussian N
white noises given by: Clearly, wheneveW is finite, the two cost functiond, and
w v Jn are equivalent in the sense that they produce the same set
w(t) ~ N (0, %), vi(®) ~ N(0, @7). of optimal solutions. However, the total cok{ (o; ¢g) — oo
Define A\, = Anin(®*) and A; = min;em{Anin(®Y)}. asN — oo for all 0 € M*> and¢, € A because the system
Assume that\, > 0 andX; > 0. LetM :={1,..., M} be is constantly perturbed by a nontrivial Gaussian naige).
the set of sensor indices. For eabhc Z., denote byM”"  Thus, the performance of an infinite-horizon sensor scleedul



is usually measured by the limsup of thehorizon average- One can also viewt?(-) as the composition of a sequence
per-stage cost: of Riccati mappings, i.e.,
Joo (05 ¢90) = limsup J (05 o). Y = Po(t-1) © Po(t—2) " O Po(0)s tE L. (12)

N—o00

This cost function has been extensively used for studying TO Solve Problem 1, it is critical to understand the dy-
various infinite-horizon optimal control and estimatiomipr Namical behavior of the matrix-valued nonlinear systen) (11
lems [7], [17]. However, this cost function depends On|y~|nder different infinite-horizon schedules. Two well-kmow
on the limiting behavior of the schedule, which may leadProperties of the Riccati mapping are useful for this puepos
to rather abnormal optimal solutions. For example, one can Lemma 1:For anyi € M, Q1,Q2 € A andc € [0,1], we
manipulate a finite portion of an optimal schedule to creat@ave

an arbitrary transient behavior for the error trajectortheaut () Q1 =2Q2= pi(@Q1) = pi(Q2);

affecting the optimality of the schedule. In some extreme (i) pi(cQ1 + (1 —¢)Q2) = cp;(Q1) + (1 — ¢)p;(Q2).
cases, the optimal schedule may even have an unboundedRemark 2: The lemma indicates that the Riccati mapping
error covariance while still resulting in the minimum infed  is monotoneand concave The monotonicity property is
horizon average error. To exclude these abnormalitieshfor ta well-known result and its proof can be found in [18].
infinite horizon, we introduce the following feasible set ofThe concavity property is an immediate consequence of

sensor schedules with bounded peak covariance: Lemma 1-(e) in [19].
o . Based on these two properties, one can prove the following
o ={oeM™ 38 < oo, sit. results.
Y7 (9) 2BVt €Ly}, ¢ €A Theorem 1:For any¢ € A, e € Rt, 0 € M™, andt €

Zy, we haveXy (¢+el,,) < X7(¢)+ g7 (¢) - €. Furthermore,
if X7(¢) =< pI, for all t € Z; and somef < oo, then
tr(g7 (¢)) < nB/Ayn', Vit € Z.,, where

For an arbitrary matrixp € A, an infinite-horizon sensor
scheduler is calledfeasiblefor ¢ if o € MZ°. The following
assumption is adopted throughout this paper.

Assumption 1M # (), V¢ € A. 1 Ao
Remark 1:The assumption requires that for any initial co- 7 = 1+ arg <l and a= I A[1282 + A\a B’ (13)
variance, there always exists an infinite-horizon schethae Proof: See [20].

can keep the estimation error bounded for all time. This is The above theorem reveals an important property of sys-

a reasonable assumption for typical estimation applioatio tem (11), namely, boundedness of the trajectory implies an

It can be guaranteed if, for example, one of the subsysteragponential disturbance attenuation. This property plays

is detectable. crucial role in deriving the various properties of the o@lm
Problem 1: For a giveng, € A, solve the following infinite-horizon schedules in Section IV.

problem
IV. PROPERTIES OFOPTIMAL SCHEDULE

[ 7% A . . = .
Vi(o) = aérmlxﬂf;% hfvnjfop In (3 go) ©) In this section, we will use the properties of the sequential

Assumption 1 implies thatV*(¢o) is finite for all Rigcati mapping dfarived in _the last section to gain some
#o € A. The functionV* : A — R, defined implicitly by insights on the optimal solutions of Problem 1.
equation (9) is called the optimal infinite-horizon (averag
. A.
per-stage) cost function. For a genegale A, a schedule _ ) o
schedulefor 6. initial covariance.

Lemma 2:If ¢ € ng for someg; € A, theno € M;O
Ill. SEQUENTIAL RICCATI MAPPING AND | TS STABILITY for all ¢ € A.
The Riccati recursion in (4) can be viewed as a mapping  Proof: Fix arbitrary ¢; € A, ¢ € A ando € Mg .
that maps a given matrixy € A to another matrix Since¢ < ¢1 + ||¢ — ¢1||I., by Theorem 1, we have
¥7.1 € Adepending on the sensor index chosen at time

Independence of Initial Covariance

In general, for each sensokE M, we can define thiccati E7(¢) 257 (¢1) + 97 (¢1) - l|¢ — ¢nll-
mappingas The first term on the right hand side is bounded because
pi(Q) = ¥ + AQAT o € M3, while the second term is bounded due to
Theorem 1. Thusg € M. ]

v -1 . . e o . . .
—AQCT (CiQCT + 7)) CiQA", vQ € A, (10) Therefore, if an infinite-horizon schedule is feasible for
With this notation, for a generic initial covariance matrixSeme initial covariance matrix, it will be feasible for atitial
6 € A the cova,riance matrix? (¢), defined in (4), is covariances. This allows us to drop the dependence of the

the trajectory of the following matrix-valued time-vargin feasible set on the initial covariance and simply define
nonlinear system: ® = {0 eM™:38 < 00,6 € A
Y1 = pow) (B7), fort € Z,, with ¥§ =¢.  (11) st.X7(p) <X B, Vt €Z 1. (14)



We next show that under a fixed schedale= M%°, all
the trajectories starting from different initial covareas will
eventually converge to the same trajectory.

Theorem 2:For any feasible schedute € M%°, we have

|27 (1) — £7 (p2)]| — 0 exponentially ag — oo,

for all ¢1,¢2 € A.

Proof: Fix arbitrary ¢p; € A and ¢» € A. Define
€ = |¢1 — ¢=2||. Without loss of generality, lef < oo
be the bound such that{(¢,) < gI, for all t € Z, and
i1 =1,2. By Theorem 1, we have

N7 (d2) 2 X7 (d1 + [|p2 — 1/ 1n)
N7 (1) + g7 (1) - €

52ﬂ@>+(ﬁ%ﬂ'u

Aw (15)

Similarly, we can obtain

- - npe
(o) = 27000 + (2 ) 1
for all t € Z. The result follows directly from the above
inequalities ag — oc.

An immediate consequence of the above theorem is thit
the infinite-horizon average-per-stage cost of any feasib

schedule is independent of the initial covariance matrix.
Corollary 1: For anyo € M%, Joo(0; ¢1) = Joo(0; ¢2)
for all ¢1, ¢ € A.
Proof: By Theorem 2,57(¢1) — X7 (¢2) ast — oc.
Thus, the two sequences: S | 27 (6:)}nez,, i = 1,2,
must have the same limsup. ]

By the above corollary, it is easy to see that if a feasible

schedules is optimal for some initial covariancg;, then it
must also be optimal for any other initial covariangg In
addition, the optimal infinite-horizon average-per-stagsts

Theorem 3:The accumulation set is globally asymptoti-
cally stable, i.e.x7(¢) — L7 ast — oo, for all ¢ € A.
Proof: Follows directly from the definition of the
accumulation set and Theorem 2. ]

C. Periodic Suboptimal Schedule

The goal of this subsection is to show that the optimal
infinite-horizon cost can be approximated with an arbitrary
accuracy by a periodic schedule. Throughout this subsectio
unless otherwise stated, we will denote byan arbitrary
feasible schedule irMJ‘%O, by ¢> an arbitrary accumulation
point in L7, by ¢ an arbitrary constant irf0, 1) and byr
an arbitrary positive finite constant. In addition, for ahg
Zy, leto;, be another infinite-horizon schedule obtained by
removing the firstj steps fromo, i.e., 0,4 = {0(j),0(j +
1),...}

Lemma 3 (Uniform Bound)For any bounded sdt C A,
there exists finite constant;, ag andng € (0, 1) such that
S () <X Brl, and t(g"* (¢)) < apnk, forall j, t € Z,
and¢ € F.

Proof: Fix an arbitraryp, € F. Define the covariance
trajectory undet with initial covariancep; asy: = X7 (¢1),
t € Z+. Sinceo is feasible, there must exist a finite constant
such thaty, < p11, for all t € Z,. By Theorem 1,
Fhere exist constants; < oo andn; € (0,1) such that
tr(g7 (¢1)) < axnt, for all t € Z,.. It can be easily verified
that for anyt,j € Z, we haveX;’*(¢;) = v,;. Thus,
tr(g;’" (1;)) < aunt as well for allt, j € Z... Therefore, by
Theorem 1,

S0 (0) X BT (W) + o — sl 1n)
BT () 4 977 (i)l — sl
= Py +oani (kg + B1)In,

for all ¢ € E, where kg £ sup,cy ||¢[l. This implies
the existence of the desired constaf, which in turn

corresponding to these two initial covariances must also liiarantees the existence of the desired constaptsand

the same.
Corollary 2: For any ¢1,¢2 € A, if o* is optimal for
#1, then it must also be optimal fap,; and in addition,

V(1) = V*(42).

ng according to Theorem 1. [ ]

The above lemma indicates that the covariance trajectories
starting from any initial covariance in a bounded &getare
bounded uniformly by5gI,. The boundsg depends only

Therefore, to solve Problem 1, we can start from angn the underlying sek instead of the particular value of the
initial covariance matrix at our convenience. The obtainethitial covariance. Furthermore, the same bound also eppli

optimal solution would also be optimal for all the other iiaiit
covariances.

B. Stable Accumulation Sets Under Feasible Schedules
For anyo € M¥, let L7 be theaccumulation sebf the

closed-loop trajectory of the nonlinear system (11) under
schedules with a zero initial covariance. In other words, the
setL? contains all the points whose arbitrary neighborhoods

will be visited infinitely often by the trajectory>¢ (0) };cz, .

This set characterizes the dynamical behavior of system (11

under the schedule.

According to Theorem 2, a trajectofy{ (¢) }ez, under
schedules starting from any initial covariance € A will
converge to the same accumulation €t This implies the
global attractiveness of the accumulation set.

if we remove a finite number of steps from the schedule. We
next use this result to show a key lemma of this subsection.
Lemma 4 (Contraction)iet j € Z, be arbitrary.
(i) Forany bounded sdf C A, there exists a finite integer
lp such that

IZ77 (61) = 37" (@) < cllér = all,

for all ¢1,¢2 € F and alll > [,.

(i) There exists a finite integér(possibly depending on
andr) such that:;]”* is a contraction om(¢; r) with
contraction constartt, namely, it satisfies (16) for all
b1, 62 € B(d;r) and B(¢;r) is invariant unde;’* .

(i) Forany0 < r; < ry < 00, there exists a finité € Z.

such that>;”* is a contraction on bottB(p; ;) and

B(é;rg) with the same contraction constant

(16)



Proof: (i) Fix arbitrary ¢1, ¢, € E. By Theorem 1 and (i) (Suboptimal Performance): The infinite-horizon cokt o

Lemma 3, we have & is bounded from above by
S0 (1) 2B (62 + o1 — da| 1) Joo(050) S V() + 0.
= X7 (¢2) + apnpllér — ¢l In, Proof: Let o* be an optimal infinite-horizon schedule

. . and let¢* be an accumulation point i . According to
whereay andng are the constants mentioned in Lemma 3{ emma 4, for any) < r1 < ro < 0o, there exists ah € Z

Thus, there exists a finite integgy such that for which Z;f}l is a contraction o3(¢*; ), i = 1,2, with

ST (¢y) = 20 (o) + cl|dr — bal[In, V1 > lo. contraction constant for all j € Z, . Divide the schedule
N N o* into a sequence dfhorizon sub-schedules and denote by
Similarly, we can show that o™ the (k + 1)t sub-schedule fok € Z., i.e.,
Z/(@2) 2B (1) + elldz — @l Tn, VT = Do, o ={o*(k-1),0"(k-1+1),....0"((k+1) -1 - 1)}.

(i) SinceB(ngS;_r) is bounded, part (i) implies the existencegy | emma 4 and the Banach fixed point theorem, we know
of an [, for which inequality (16) holds for aly, 2 €  tha1") has a unique fixed point iB(¢*; r,) for all k € Z. .
B(¢;r). Furthermore, since € £7 is an accumulation point, pafine

there exists a finite integér> [y, such that
177 (¢) = @Il < (1= o)r.

Therefore, for anys € B(¢;r), we have

M. & {5, € M' :X7'(-) is a contraction or3(¢*;7;)
i = 1,2, with contraction constant }.

(k)

o . o s . . o Clearly, the setM! is non-empty ass;” € M! for all
1Z,77(8) — ol <IIZ77(8) — o+ X777 () — ;77 ()] k € Z,. By the Banach fixed point theorem, for any
<(l-¢r+c-r=r, o, € ML, the composite Riccati mapping’(-) has a fixed

R point in B(¢*; r1). Denote this fixed point b¥'(o;). Define

which implies thatB(¢;r) is invariant under the mapping
S (). of £ argmin J(T'(ay); 07),

(iii) Let lo be a constant such that (16) holds for all 1M
¢1,02 € B(¢;r2). Then, following the argument as in the The goal now is to show that tHeperiodic schedule defined
proof of part (ii), we can show that the same> [, that py:
makesXy a contraction on3(¢; 1) will guarantee thabtsy R
is a contraction or3(¢; ;) as well. [ ] g ={o/,00,...},

The followi Il highlight i tant - . . . .
quenie gf(i\;lvéngbg?/:eolsgmalg 'ghts an important conse is a suboptimal schedule with the desired properties.

) ; . ; To show property (i), we choose large enough so that
Corollary 3: Let [ be an integer satisfying the desired » .
properties of part (ii) of Lemma 4. Then, for anye B(cf);r), ¢ € B((.;S i72). Then the result follows directly from the
we haves? () B(d;r), for all k € Z,. contraction mapping theorem. . "
Proof: The result holds trivially fork = 0. Suppose T‘Z prove the secc()kr;d prolperty, we I8}, = I'(o;) and
it is true for some general € Z_, i.e., %7,(¢) € B(¢;r), I =T(o7). Sinces;” € M, for all k € Z,, we have
then k)
N ) J(Pai) < T (Paol™) vk e 2y,
E€k+1)~z(¢) =3,°7(%7.,(9)) € B(g;7), .
o Let ¢ = ¢ (P*) be the optimal covariance trajectory
\ghsrejg - k l artld tze latit step fqllov(\j/jsol‘rom the fact thatundera* with initial covarianceP* € B(¢*;r1). By Corol-
(1) Is invariant under the mapping, " . lary 3, we know that)} , € B(¢*;r1) for all k € Z. Hence,
Corollary 3 indicates an important property of a feasible
scheduleos, namely, for any neighborhoo#(¢; ) around Vg, — Pell <2r1, Vk€Z,.
any accumulation poingp € L, there always exists an
I € Z, such that the covariance trajectory ungemust Therefore, for any € Z., we have
return to the neighborhoo(¢;r) everyl steps. This is a
key. prpperty that guarantees the existence of a suboptimal Ji (P*y07) < Ztr <Z:z (Pk)>
periodic schedule.
Theorem 4 (Periodic Suboptimal Schedul&pr anyd >

l
0 and¢ € A, there exists a periodic schedutewith a finite < Z T (Zfl(k) ( Z-z)) 4 r <g:§k> ( 2-1))}
period! € Z., such that =1
() (Exponential Convergence}l? ,(¢) — P* exponen- (k41)-L
tially as k — oo, where P* is a fixed point of the < [tr(v7) + 27100,

composite Riccati mapping? (-). t=k-l+1



whereq,., denotes the constantz introduced in Lemma 3 which the optimal finite-horizon average-per-stage dast
when E' = B(¢*;r2). After some simple computations, thewill converge to the optimal infinite-horizon average-per-
above inequality leads to stage cosV* as N — cc.
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