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a b s t r a c t

Consider a set of sensors estimating the state of a process in which only one of these sensors can operate
at each time-step due to constraints on the overall system. The problem addressed here is to choosewhich
sensor should operate at each time-step to minimize a weighted function of the error covariances of the
state estimates. This work investigates the development of tractable algorithms to solve for the optimal
and suboptimal sensor schedules. A condition on the non-optimality of an initialization of the schedule
is developed. Using this condition, both an optimal and a suboptimal algorithm are devised to prune the
search tree of all possible sensor schedules. The suboptimal algorithm trades off the quality of the solution
and the complexity of the problem through a tuning parameter. The performance of the suboptimal
algorithm is also investigated and an analytical error bound is provided. Numerical simulations are
conducted to demonstrate the performance of the proposed algorithms, and the application of the
algorithms in active robotic mapping is explored.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Recent work in estimation theory has dealt with various
topics such as sensor fusion from multiple sources, coverage
control in wireless sensor networks, estimation with intermittent
or delayed observations, data association for tracking multiple
targets, scheduling of sensors’ measurements, to name a few. This
work focuses on the problem of sensor scheduling which consists
of selecting one (or multiple) sensors out of a number of available
sensors at each time-step to minimize a function of the estimation
error over a finite time-horizon. Additionally, this work can be
extended to the problem of optimal positioning of sensors or
trajectory planning for mobile sensors. Other possible applications
of this work include management of sensor networks, energy
efficient control of buildings, and state estimation with sensor
constraints.

✩ The material in this paper was partially presented at the 49th IEEE Conference
on Decision and Control (CDC 2010), December 15–17, 2010, Atlanta, Georgia,
USA and the 2010 American Control Conference (ACC’10), June 30–July 2, 2010,
Baltimore, Maryland, USA. This paper was recommended for publication in revised
form by Associate Editor Andrey V. Savkin under the direction of Editor Ian R.
Petersen.

E-mail addresses: vitus@eecs.berkeley.edu (M.P. Vitus), zhang@ece.osu.edu
(W. Zhang), a.abate@tudelft.nl (A. Abate), jianghai@purdue.edu (J. Hu),
tomlin@eecs.berkeley.edu (C.J. Tomlin).
1 Tel.: +1 5185731681; fax: +1 510 6437846.
2 These authors contributed equally to this work.

With the advances of sensor networks and the improvement of
unmanned systems for reconnaissance and surveillance missions,
the environment is being inundated with sensor networks
monitoring external processes (Arai, Iwatani, & Hashimoto, 2007;
Gao, Vu, & Li, 2006; Li, Krakow, Chong, & Groom, 2009; Martinez
& Bullo, 2006). In these networks, a sensor scheduling policy
might be desired due to constraints on the communication
bandwidth or power requirements that limit the number of
nodes that can operate at each time-step. Another application
of sensor scheduling is in energy efficient control of buildings
through participatory sensing. By leveraging the occupants’
smartphones to localize the users in the building and to infer their
destinations (Ziebart et al., 2009), an energy saving policy can
be enabled by adjusting the lights, the computer power settings,
or the temperature set points. The building’s occupants could
be localized by using triangulation of the smartphone’s Wi–Fi
signal (Varshavsky et al., 2006); however, this would quickly
drain the battery. Sensor scheduling has the potential to decrease
the power consumption by determining when to use the Wi–Fi
triangulation to accurately locate the user, or otherwise integrate
the smartphone’s inertial measurements to provide a rough
estimate. In addition to conserving power, sensors may interfere
with one another, as with sonar range-finding sensors, and thus
may not operate at the same time. One application where this
occurs is in terrain relative navigation (Meduna, Rock, & McEwen,
2008) for underwater vehicles which correlates depth readings
from sonar measurements with a pre-existing map to localize
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the vehicle. Typically there are several sonar devices onboard the
vehicle with different measurement patterns as well as different
noise characteristics. Given the interference between the sonar
sensors, only one device may be operated at once and therefore
the objective would be to manage the schedule of sonar devices to
better localize the vehicle.

The sensor scheduling problem has been studied extensively in
the past. In a seminal work, Meier, Peschon, and Dressler (1967)
proposed a solution to the discrete-time scheduling problem
through the use of dynamic programming which enumerates all
possible sensor schedules. The combinatorial complexity makes
this method intractable for long schedule horizons. A local
gradient method was also proposed which is more likely to be
computationally feasible, but only provides a suboptimal solution.
Given the inherent computational complexity in solving the sensor
scheduling problem, the research community has concentrated on
developing computationally efficient algorithms.

In Alriksson and Rantzer (2005), a relaxed dynamic program-
ming procedure is applied to obtain a suboptimal strategy that is
bounded by a pre-specified distance to optimality, but is only ap-
plicable for an objective function that minimizes the final step es-
timation error. A convex optimization procedure was developed
in Joshi and Boyd (2009) as a heuristic to solve the problem of
selecting k sensors from a set of m sensors. Although no optimal-
ity guarantees can be provided for the solution, numerical experi-
ments suggest that it performs well. In Gupta, Chung, Hassibi, and
Murray (2004) and Oshman (1994), heuristics such as a sliding
window or a greedy selection policy were employed in order to
prune the search tree. Another approach Gupta, Chung, Hassibi,
and Murray (2006) proposed to switch sensors randomly accord-
ing to a probability distribution to obtain the best upper bound on
the expected steady-state performance. Savkin, Evans, and Skafi-
das (2000) considered the problem of robust sensor scheduling in
which the noise and uncertaintymodels were unknown determin-
istic functions. Their solution was given in terms of a solution to
a Riccati differential equation. Rezaeian and Rezaeian (2007) for-
mulated the sensor scheduling problem as a partially observable
Markov decision process (POMDP) and minimized the estimation
entropy to obtain the optimal observability. A sensor scheduling
algorithm trading off the performance and sensor usage costs was
devised in He and Chong (2004), and was also formulated as a
POMDP and solved via an approximation process.

Sensor selection for target tracking has also been extensively
studied. Isler and Bajcsy (2006) proposed a sensor selection
approximation algorithm tominimize the estimation error of a tar-
get that is guaranteed to be within a factor of 2 of the smallest er-
ror. An entropy-based heuristic algorithm proposed in Wang, Yao,
Pottie, and Estrin (2004) greedily selects the next sensor that pro-
vides the greatest reduction in entropy at the next time-step. Ertin,
Fisher, and Potter (2003) proposed a greedy algorithm by choos-
ing the sensor which maximizes the mutual information at the
next time-step. The target tracking problem has also been for-
mulated as a POMDP (He & Chong, 2004) and solved through a
Monte Carlo method using a sampling-based Q-value approxima-
tion for computing the cost of a sensor schedule. Another Monte
Carlo method is proposed in Chhetri, Morrell, and Papandreou-
Suppappola (2003) which chooses the sensor to minimize the pre-
dicted mean-square error of the target state estimate. Two greedy
based sensor scheduling algorithms were developed in Chhetri,
Morrell, and Papandreou-Suppappola (2007); they formulated the
problem as a mixed integer optimization program and solved it
through a branch and bound technique.

As compared to previous works, the main distinction of this
paper is the development of several efficient scheduling algorithms
that drastically reduce the computational complexity while also
providing an analytical bound for the solution quality. This is

accomplished by leveraging the recent results of optimal control
for switched systems which can be thought of as the dual
of the sensor scheduling problem. A switched system consists
of a family of subsystems, each with specific dynamics, and
allows for controlled switching between the different subsystems.
The analysis and design of controllers for hybrid systems
has received a large amount of attention from the research
community (Bemporad &Morari, 1999; Borrelli, Baotic, Bemporad,
& Morari, 2005; Branicky & Zhang, 2000; Lincoln & Rantzer,
2003; Tomlin, Lygeros, & Sastry, 2000; Zhang & Hu, 2008; Zhang,
Hu, & Abate, 2012). Zhang and Hu (2008) and Zhang et al.
(2012) proposed a method based on dynamic programming to
solve for the optimal discrete mode sequence and continuous
input for the discrete-time linear quadratic regulation problem
for switched linear systems. They proposed several efficient and
computationally tractable algorithms for obtaining the optimal
and bounded suboptimal solution through effective pruning of the
search tree, which grows exponentially with the horizon length.

This work presents three main contributions, arising out of
the insights from the control of switched systems in Zhang and
Hu (2008) and Zhang et al. (2012), to reduce the computational
complexity of the sensor scheduling problem. First, the properties
of the estimation process are analyzed to develop a condition on
thenonoptimality of the initialization of a sensor schedule. Second,
based on the previous condition, two efficient pruning techniques
are developed which provide optimal and suboptimal solutions.
These algorithms can significantly reduce the computational
complexity and thus enable the solution of larger systems with
longer scheduling horizons. The suboptimal algorithm includes
a tuning parameter which trades off the quality of the solution
with the complexity of the problem, for small and large values
respectively. Third, an analytical bound on the quality of the
solution from the suboptimal algorithm that provides insight into
the performance of the algorithm is presented. Specifically, as the
tuning parameter decreases, the suboptimal solution approaches
the optimal solution asymptotically; and as the tuning parameter
increases, the error only grows linearly. The properties of the
optimal and suboptimal algorithms are demonstrated through
several numerical examples. Although the paper focuses on
choosing only one sensor, the proposed algorithms also apply to
the case of selecting multiple sensors at each time-step at the cost
of increased complexity.

The paper is structured as follows. Section 2 describes the stan-
dard sensor scheduling problem formulation. Then, several proper-
ties of the objective function are explored in Section 3. In Section 4,
a pruning algorithm is proposed which provides the optimal solu-
tion. In Section 5, the optimal algorithm is generalized to provide
a suboptimal solution while reducing the computational complex-
ity, and the error of this suboptimal solution is bounded. Numerical
examples on the performance of the suboptimal solutions are pre-
sented in Section 6 and an application in active robotic mapping
is presented in Section 7. The paper concludes with directions of
future work.

2. Problem formulation

Consider the following linear stochastic system defined by
x(k + 1) = Ax(k) + w(k), ∀k ∈ TN , (1)
where x(k) ∈ Rn is the state of the system,w(k) ∈ Rn is the process
noise and TN = {0, . . . ,N − 1} is the time horizon. The initial
state, x(0), is assumed to be of a zero mean Gaussian distribution
with covarianceΣ0 ≽ 0, i.e., x(0) ∼ N (0, Σ0).3 At each time-step,

3 In this paper, the notations M ≽ 0, M ≻ 0, M ≼ 0, and M ≺ 0 represent that
the matrix M is positive semidefinite, positive definite, negative semidefinite, and
negative definite, respectively.
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Fig. 1. The search tree and characteristic set for the sensor scheduling problem for an examplewith two sensors. This tree is the enumeration of all possible sensor schedules
with the corresponding covariance and running cost at each time-step. The superscript for each covariance matrix, e.g. Σ̂ (1,2) , denotes the sensor schedule used to obtain
that estimate of the state.

only one sensor is allowed to operate from a set of M sensors. The
measurement of the ith sensor is,
yi(k) = Cix(k) + vi(k), ∀k ∈ TN , (2)
where yi(k) ∈ Rp and vi(k) ∈ Rp are the measurement output
and noise of the ith sensor at time k, respectively. The process
and measurement noise have zero mean Gaussian distributions,
w(k) ∼ N (0, Σw), vi(k) ∼ N (0, Σvi), ∀i ∈ M, where M ,
{1, . . . ,M} is the set ofM sensors. The process noise,measurement
noise and initial state are assumed to bemutually independent. Let
λ−

w be the smallest eigenvalue of Σw and assume that λ−
w > 0. In

addition, assume that Σvi ≻ 0, ∀i ∈ M. Denote by Mt the set of
all ordered sequences of sensor schedules of length t where t ≤ N .
An element σ = {σ0, σ1, . . . , σt−1} ∈ Mt is called a (t-horizon)
sensor schedule. Under a given sensor scheduleσ , themeasurement
sequence is
y(k) = yσk(k) = Cσkx(k) + vσk(k), ∀k ∈ {0, . . . , t − 1}.

For each k ≤ t with t ≤ N and each σ ∈ Mt , let Σ̂σ
k be the

predictor covariance matrix of the optimal estimate of x(k) given
the measurements {y(0), . . . , y(k − 1)}. By a standard result of
linear estimation theory, the Kalman filter is the minimum mean
square error estimator, and the predictor covariance of the system
state estimate evolves according to the Riccati recursion (Kumar &
Varaiya, 1986)

Σ̂σ
k+1 = AΣ̂σ

k A
T
+ Σw

− AΣ̂σ
k C

T
σk

(CσkΣ̂
σ
k C

T
σk

+ Σvσk
)−1CσkΣ̂

σ
k A

T (3)

with initial condition Σ̂σ
0 = Σ0 and k ≤ t . Let R+ and Z+ be the

set of nonnegative real numbers and integers, respectively. Define
J(σ ) : Mt

→ R+ as the accrued estimation error under schedule
σ , i.e.,

Jt(σ ) =

t
k=1

tr (Σ̂σ
k ). (4)

The sensor scheduling problem is formulated as the following
discrete optimization problem:
minimize

σ∈MN
JN(σ ), (5)

and its optimal value is denoted by VN .

3. Characterization of the objective function

The main challenge in solving Problem (5) lies in the expo-
nential growth of the discrete set MN with respect to the horizon

length N . This exponential growth requires careful development
of computationally-tractable solutions, which are derived from the
properties developed in this section.

Let A denote the positive semidefinite cone, which is the set
of all symmetric positive semidefinite matrices. A Riccati Mapping
ρi : A → A is defined that maps the current covariance matrix,
Σ̂k, under a new measurement from sensor i ∈ M to the next
covariance matrix,

ρi(Σ̂k) = AΣ̂kAT
− AΣ̂kCT

i (CiΣ̂kCT
i + Σvi)

−1CiΣ̂kAT
+ Σw. (6)

A k-horizon Riccati mapping, φσ
k : A → A is similarly defined that

maps the covariance matrix at time 0,Σ0, to the covariancematrix
at time-step k, using the first k elements of the sensor schedule σ :

φσ
k (Σ0) = ρσk−1(. . . ρσ1(ρσ0(Σ0))). (7)

An example of the search tree, for two sensors, corresponding
to the problem defined in Eq. (5) is shown in Fig. 1. Each node
on the kth level of the tree corresponds to a k-horizon sensor
schedule σ ∈ Mk and is represented by the so-called characteristic
pair (Σσ

k , γ σ
k ) that consists of the covariance matrix Σσ

k and the
accrued cost γ σ

k = Jk(σ ) for the schedule σ . These pairs can
be computed iteratively using the Riccati mapping. For example,
the pair (Σ

(1)
1 , γ

(1)
1 ) in Fig. 1 can be obtained as Σ

(1)
1 = ρ1(Σ0),

and γ
(1)
1 = tr (Σ

(1)
1 ), which can in turn be used to compute the

pair corresponding to the schedule (1, 2) as Σ
(1,2)
2 = ρ2(Σ

(1)
1 )

and γ
(1,2)
2 = γ

(1)
1 + tr (Σ

(1,2)
2 ). Clearly, if two nodes have the

same characteristic pair, then they will have the same sets of
descendants. The set of all the characteristic pairs at time-step k
is called the (k-horizon) characteristic set.

Definition 1 (Characteristic Set). The sequence of sets {Hk}
N
k=0

generated recursively by Hk+1 = hM(Hk) with initial condition
H0 = {(Σ0, 0)} is called the characteristic set associated with
Problem (5). Here the mapping hM(·) is called the characteristic set
mapping, which is defined by:

hM(H) = {(ρi(Σ), γ + tr(ρi(Σ))) : i ∈ M, (Σ, γ ) ∈ H}.

The characteristic sets grow exponentially in size from the
singleton {(Σ0, 0)} to the setHN consisting of up toMN pairs, each
comprising a positive semidefinite matrix and an accrued cost. Let
Hk(i) = (Σk(i), γk(i)) be the ith element of the set Hk. For any
subset Ĥk ⊂ Hk, the set of schedules corresponding to Ĥk is
defined by,

M(Ĥk) = {σ ∈ Mk
: (Σ̂σ

k , γ σ
k ) ∈ Ĥk}. (8)
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Themain idea of the proposed solutionmethod ismotivated by the
following properties of the Riccati mapping.

Theorem 1. For any i ∈ M and any Σ1, Σ2 ∈ A,
(i) (Monotonicity) If Σ1 ≼ Σ2, then ρi(Σ1) ≼ ρi(Σ2);
(ii) (Concavity) ρi(cΣ1 + (1 − c)Σ2) ≽ cρi(Σ1) + (1 − c)ρi(Σ2),

∀c ∈ [0, 1].

Remark 1. The monotonicity property is a well-known result and
its proof is provided in Kumar and Varaiya (1986). The concavity
property is an immediate consequence of Lemma 1-(e) in Sinopoli
et al. (2004).

Thus, systems starting with a larger initial covariance, in the pos-
itive semidefinite sense, will yield larger covariances at all future
time-steps. This result is important because it provides insight on
how to reduce the complexity of the scheduling problem.

Theorem 1 can be repeatedly applied to obtain the following
corollary.

Corollary 1. Let σ ∈ MN and Σ1, Σ2 ∈ A, then ∀k ∈ [0,N] and
∀c ∈ [0, 1],
(i) If Σ1 ≼ Σ2, then φσ

k (Σ1) ≼ φσ
k (Σ2);

(ii) φσ
k (cΣ1 + (1 − c)Σ2) ≽ cφσ

k (Σ1) + (1 − c)φσ
k (Σ2).

4. Computation of the optimal sensor schedule

To enable the study on larger systems with longer scheduling
horizons, it is necessary to prune branches that are redundant and
thus will not lead to the optimal solution. The algorithm to be
developed in this section uses the properties of the Riccatimapping
to obtain an easy-to-check condition to prune branches of the
search tree without discarding the optimal schedule. For example
from Corollary 1, if two nodes (Σ̂

(1,2)
2 , γ

(1,2)
2 ) and (Σ̂

(2,1)
2 , γ

(2,1)
2 ) in

Fig. 1 satisfy the condition

Σ̂
(2,1)
2 ≼ Σ̂

(1,2)
2 and γ

(2,1)
2 ≤ γ

(1,2)
2 ,

then by the monotonicity of the Riccati mapping, all the de-
scendants of the node (Σ̂

(1,2)
2 , γ

(1,2)
2 ) in the search tree will

have a larger cost than the corresponding descendants of the
node (Σ̂

(2,1)
2 , γ

(2,1)
2 ). Hence, the exploration of the branches

under (Σ̂
(1,2)
2 , γ

(1,2)
2 ) can be avoided, or equivalently the pair

(Σ̂
(1,2)
2 , γ

(1,2)
2 ) can be pruned from the characteristic set H2. Such

a pair will be called redundant. By further considering the concav-
ity of the Riccati mapping, other redundant pairs can be identified
and pruned from the search tree. The following definition provides
a condition to characterize redundant pairs.

Definition 2 (Algebraic Redundancy). A pair (Σ, γ ) ∈ H , where
H is a characteristic set (Def. (7)), is called algebraically redundant
with respect to H \ {(Σ, γ )}, if there exist nonnegative constants
{αi}

l−1
i=1 such that

l−1
i=1

αi = 1, and

Σ 0
0 γ


≽

l−1
i=1

αi


Σ(i) 0
0 γ (i)


where l = |H | and {(Σ(i), γ (i))}l−1

i=1 is an enumeration of H \

{(Σ, γ )}.

Using Corollary 1, one can show that the branches corresponding to
the redundant pairs can be pruned without discarding the optimal
solution of the sensor scheduling problem.

Theorem 2. If the pair (Σ, γ ) ∈ Ht is algebraically redundant, then
the pair and all of its descendants can be pruned without eliminating
the optimal solution from the search tree.

Proof. Let (Σ, γ ) be an algebraic redundant pair satisfying the
condition in Definition 2 with some constants {αi}

l−1
i=1. It suffices

to show that there exists a pair (Σ̃, γ̃ ) ∈ Ht \ (Σ, γ ) such that
∀σ N−t

∈ MN−t ,

γ +

N−t
k=1

tr(φσN−t

k (Σ)) ≥ γ̃ +

N−t
k=1

tr(φσN−t

k (Σ̃)).

From the monotonicity and concavity of φσ r

k ,

γ +

N
k=s

tr(φσ r

k−t(Σ)) ≥

l−1
i=1

αi


γ (i) +

N
k=s

tr(φσ r

k−t(Σ(i)))


where r = N − t , s = t + 1 and l = |Ht |. Finally, the convex
combination of the scalar variables indexed by i is lower bounded
by the smallest one, i.e.,

γ +

N
k=s

tr(φσ r

k−t(Σ)) ≥ γ (i∗) +

N
k=s

tr(φσ r

k−t(Σ(i∗)))

where i∗ = argmini∈[0,l−1]γ (i) +
N

k=s tr(φ
σ r

k−t(Σ(i))). Therefore
the branch defined by (Σ, γ ) and its descendants can be
eliminated because it will not contain the optimal solution. �

Definition 3 (Equivalent Subset). Let the set H̄ = {(Σ̄(i), γ̄ (i))}|H̄ |

i=1

be called an equivalent subset of H = {(Σ(i), γ (i))}|H |

i=1, if the
set H̄ ⊂ H contains a schedule that leads to the global optimal
solution, i.e.,

min
i≤|H̄ |

γ̄ (i) = min
i≤|H |

γ (i).

According to Theorem 2 and Definition 3, an equivalent subset
of a characteristic set H can be obtained by removing all the
redundant pairs in H as illustrated in Algorithm 1. The first step
is to sort the set in ascending order based upon the current cost
of the branches, which is a reasonable heuristic for obtaining the
minimum size of the equivalent subset. The equivalent subset is
then initialized to the current best branch. Next, each entry in H is
tested with the current equivalent subset,H (i−1), to determine if it
can be eliminated. If not, then it is appended to the current subset.
The equivalent subset returned by this algorithm is denoted by
ES(H).

Algorithm 1 [ES (H)]

1: Sort H in ascending order such that γ (i) ≤ γ (i + 1), ∀i ∈

{1, . . . , |H | − 1}
2: H (1)

= {H(1)}
3: for i = 2, . . . , |H | do
4: if H(i) satisfies Definition 2 with respect to H (i−1) then
5: H (i)

= H (i−1)

6: else
7: H (i)

= H (i−1)
∪ H(i)

8: end if
9: end for

An efficient method for computing the optimal sensor schedule
which uses the proposed pruning technique is stated in Algorithm
2. The procedure first initializes the characteristic set to the pair
composed of the a priori covariance of the initial state and initial
cost. Then, for each time-step it computes the characteristic set
mapping and calculates the equivalent subset with Algorithm
1. Once the tree is fully built, the optimal sensor schedule is
determined.

By using the proposed pruning technique, the complexity of the
problem could be drastically reduced as displayed in the following
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Algorithm 2 Sensor Scheduling for a Finite Horizon
1: H0 = {(Σ0, 0)}
2: for k = 1, . . . ,N do
3: Hk = hM (Hk−1)
4: Perform ES (Hk)
5: end for
6: σ ∗

= argmin
σ∈M(HN )

γ σ
N
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Number of Branches vs Time−step

Brute Force

Exact Redundant

ε−Redundant: ε=0.1

Fig. 2. Comparison of the number of branches at each time-step for the brute
force enumeration, the exact redundant elimination and the numerical redundant
algorithm (See Section 5) with ϵ = 0.1.

example. Consider a sensor scheduling problem with a horizon
N = 50 and the following system matrices

A =


0.9 −0.15
0.1 1.8


, Σw =


1 0
0 1


,

C1 = [1.0 0.0], Σv1 = 0.1,
C2 = [0.0 1.0], Σv2 = 0.3,
C3 = [0.25 − 0.75], Σv3 = 0.2.

Fig. 2 compares thenumber of branches required for the brute force
enumeration versus Algorithm 2 which also provides the optimal
solution but prunes redundant branches. At the final time-step,
there are 1026 branches in the whole search tree, but only 114
branches are required for Algorithm 2.

Even though the optimal solution prunes a large number of
branches, the growth of the search tree may still become pro-
hibitive for some problems. Therefore, an approximate solution
may be desired.

5. Suboptimal scheduling

5.1. Suboptimal scheduling algorithm

To further reduce the complexity, the algebraic redundancy
concept can be generalized to allow for numerical error. Similar
to Definition 2, the following definition provides a condition for
testing the ϵ-redundancy of a matrix.

Definition 4 (ϵ-Redundancy). A pair (Σ, γ ) ∈ H is called ϵ-
redundant with respect to H \ {(Σ, γ )}, if there exist nonnegative
constants {αi}

l−1
i=1 such that

l−1
i=1

αi = 1,

Σ + ϵI 0

0 γ + ϵ


≽

l−1
i=1

αi


Σ(i) 0
0 γ (i)


where l = |H | and {(Σ(i), γ (i))}l−1

i=1 is an enumeration of H \

{(Σ, γ )}.

Fig. 3. Example covariances that demonstrate the concept of ϵ-redundancy. One
possible convex combination of Σ1 and Σ2 is represented by Σ̃ and let γ̃ be the
same convex combination of their costs. Σ1 and Σ2 cannot strictly eliminate Σ̄

because it does not contain Σ̃ . However, if the condition is relaxed by ϵ, then Σ̄ +ϵI
does contain Σ̃; consequently, if γ̄ + ϵ ≥ γ̃ then the branch can be eliminated.

Fig. 3 illustrates the premise behind the ϵ-redundancy concept
introduced in Definition 4. Let Σ̃ represent one possible convex
combination of Σ1 and Σ2. In this example, Σ1 and Σ2 cannot
strictly eliminate Σ̄ because Σ̄ does not contain Σ̃ . However, if
the condition is relaxed for some ϵ > 0, then Σ̄ + ϵI contains Σ̃ .
Consequently, for that ϵ if γ̄ + ϵ is greater than the same convex
combination of γ1 and γ2 then Σ̄ can be eliminated. Therefore,
the ϵ-redundancy concept can further reduce the number of
branches in the search tree and the complexity of the problem.
This may enable the solution of some scheduling problems that
are intractable using the optimal algorithm discussed in the last
section.

Similar to Algorithm 1, the convex condition in Definition 4
can be used to identify and prune ϵ-redundant matrices of a
characteristic set. Denote by ESϵ(H) the set of the remaining pairs
after removing all the ϵ-redundant pairs in H that satisfy the
conditions given in Definition 4. To determine the ϵ-approximate
solution of the sensor scheduling problem, Algorithm 2 can be
modified by substituting ESϵ(·) for ES(·). The modified algorithm
will be referred to as the suboptimal scheduling algorithm (or ALGOϵ)
in the rest of this paper. The essential part of this algorithm is to
compute the so-called ϵ-relaxed characteristic sets {H ϵ

k }
N
k=0

H ϵ
k = ESϵ(hM(H ϵ

k−1)), with H ϵ
0 = {(Σ0, 0)}. (9)

The set H ϵ
N typically contains fewer pairs than HN and is easier

to compute. To simplify the computation, the schedule that
minimizes JN(σ ) among all the schedules in M(H ϵ

N) can be used
as an alternative to the optimal schedule. Denote by σ ϵ,N the
suboptimal schedule computed by ALGOϵ , namely,
σ ϵ,N

= argmin
σ∈M(Hϵ

N )

JN(σ ).

An example of the complexity for the suboptimal algorithm is
shown in Fig. 2 for an ϵ = 0.1. By eliminating ϵ-redundant pairs,
the complexity is reduced from 114 for the optimal algorithm
to 11. While the suboptimal algorithm drastically reduces the
computational complexity, it might sacrifice the quality of the
solution. Consequently, an upper bound on the distance from the
optimal solution is needed.

5.2. Performance analysis

For each k ≤ N , define the (k-horizon) relaxed value function V ϵ
k

as
V ϵ
k = min

σ∈M(Hϵ
k )
Jk(σ ) = min

(Σ,γ )∈Hϵ
k

γ . (10)

Under this notation, the cost associatedwith the schedule returned
by the suboptimal algorithm is V ϵ

N . The goal of this section is to
derive an upper bound for the average-per-stage error, namely
1
N (V ϵ

N − VN), incurred by the relaxation procedure of Eq. (9).
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5.2.1. Perturbation analysis of the Riccati mapping
For each i ∈ M and Σ ∈ A, define

Āi(Σ) , A − AKi(Σ)Ci, (11)

whereKi(Σ) is theKalman gain associatedwith sensor i andmatrix
Σ defined as

Ki(Σ) = ΣCT
i (CiΣCT

i + Σvi)
−1. (12)

To develop an analytical expression for the bound of the average-
per-stage error, the effect of a perturbation of the initial covariance
on all future covariances must be determined. To this end, the
directional derivative of the Riccati mapping is first characterized.

Lemma 1. For each i ∈ M and any Σ,Q ∈ A,

dρi(Σ + ϵQ )

dϵ


ϵ=0

= Āi(Σ)Q Āi(Σ)T ,

where Āi(Σ) is defined in Eq. (11).

Proof. Let i ∈ M, Σ ∈ A and Q ∈ A be arbitrary but fixed. Define
f (ϵ) = Ci(Σ + ϵQ )CT

i + Σvi . It can be easily shown that,

df −1(ϵ)

dϵ
= −f −1(ϵ)CiQCT

i f
−1(ϵ).

Taking the derivative of ρi(Σ + ϵQ ) with respect to ϵ and letting
ϵ = 0 yields

dρi(Σ + ϵQ )

dϵ


ϵ=0

= AΣCT
i f

−1(0)CiQCT
i f

−1(0)CiΣAT

+ AQAT
− AQCT

i f
−1(0)CiΣAT

− AΣCT
i f

−1(0)CiQAT

= A[(I − ΣCT
i f

−1(0)Ci)Q (I − CT
i f

−1(0)CiΣ)]AT.

Noting that f −1(0) = (CiΣCT
i + Σvi)

−1 and by the definition of
Āi(Σ), the desired result is obtained. �

Theorem 3. For any Σ,Q ∈ A, i ∈ M and ϵ ∈ R+, the following
holds:

ρi(Σ + ϵQ ) ≼ ρi(Σ) + (Āi(Σ)Q Āi(Σ)T )ϵ. (13)

Proof. By the concavity of the Riccati mapping (Theorem 1), it can
be easily verified that the mapping µi,Σ,Q : R+ → A defined by
µi,Σ,Q (ϵ) = ρi(Σ + ϵQ ), ∀ϵ ∈ R+, is also concave in ϵ for any
i ∈ M. Thus µi,Σ,Q (ϵ) can be upper bounded by an affine function
of ϵ, namely,µi,Σ,Q (0)+µ′

i,Σ,Q (0)ϵ, which togetherwith Lemma 1
yields the desired inequality. �

For any k = 0, . . . ,N , Σ ∈ A and σ ∈ MN , denote by gσ
k (Σ;Q )

the directional derivative of the k-step Riccati mapping φσ
k at Σ

along an arbitrary direction Q ∈ A, i.e.,

gσ
k (Σ;Q ) ,

dφσ
k (Σ + ϵQ )

dϵ


ϵ=0

. (14)

The following lemma describes how to analytically compute gσ
k ,

which will be useful in determining a bound for the error incurred
using the suboptimal algorithm.

Lemma 2. For any Σ,Q ∈ A and σ ∈ MN , it holds that gσ
0 (Σ;Q )

= Q and

gσ
k (Σ;Q ) =

0
t=k−1

(Āσ(t)(φ
σ
t (Σ)))Q

k−1
t=0

(Āσ(t)(φ
σ
t (Σ)))T ,

for k = 1, . . . ,N.

Proof. For simplicity, let Ât = Āσ(t)(φ
σ
t (Σ)). The case k = 0

follows directly from the fact that

φσ
0 (Σ + ϵQ ) = Σ + ϵQ .

Suppose that the result holds for a general k ≤ N − 1,

φσ
k (Σ + ϵI) = φσ

k (Σ) +


0

t=k−1

ÂtQ
k−1
t=0

ÂT
t


ϵ + o(ϵ),

where o(ϵ) satisfies o(ϵ)/ϵ → 0 as ϵ → 0. Now, it suffices to show
that this is also true for k + 1. Notice that,

φσ
k+1(Σ + ϵI) = ρσ(k)(φ

σ
k (Σ + ϵI))

= ρσ(k)


φσ
k (Σ) +


0

t=k−1

ÂtQ
k−1
t=0

ÂT
t


ϵ + o(ϵ)


.

Applying Lemma 1 to the right-hand side will yield the desired
result. �

Since the function gσ
k (Σ;Q ) is a directional derivative, it must be

linear in the perturbation direction Q .

Lemma 3. For any Σ,Q1,Q2 ∈ A, a, b ∈ R, k ≤ N and σ ∈ MN ,
the following holds:

gσ
k (Σ; aQ1 + bQ2) = agσ

k (Σ;Q1) + bgσ
k (Σ;Q2).

Similar to Eq. (13), an affine upper bound for φσ
k (Σ + ϵI) can be

obtained using Lemma 2.

Theorem 4. For any Σ ∈ A, ϵ ∈ R+, Q ∈ A and k = 0, . . . ,N,
the k-step effect of a perturbation, Σ + ϵQ , can be upper bounded by
φσ
k (Σ + ϵQ ) ≼ φσ

k (Σ) + gσ
k (Σ;Q )ϵ.

The function gσ
k (Σ;Q ) quantifies how a perturbation error in-

curred at some generic time t along directionQ will affect the error
covariance matrix k iterations later, provided that no further per-
turbation is applied after step t . The following theorem establishes
conditions under which the error term gσ

k (Σ;Q ) decays exponen-
tially as k increases.

Theorem 5. Fix arbitrary Σ ∈ A, N ∈ Z+, and σ ∈ MN . If there
exists a constant β < ∞ such that Σσ

k (Σ) ≼ βIn for all k ≤ N, then

tr (gσ
k (Σ; In)) ≤

nβ
λ−

w

ηk, k = 0, . . . ,N,

where

η =
1

1 + αλ−
w

< 1 and α =
λ−

w

β2 + λ−
wβ

. (15)

Proof. See Appendix. �

The above theorem reveals an important property of the k-horizon
Riccati mapping φσ

k : A → A, namely, boundedness of the
trajectory implies an exponential disturbance attenuation. This
property plays a crucial role in deriving the error bound for the
proposed suboptimal algorithm.

5.2.2. Error bound
Denote by σ ∗

= {σ ∗(0), . . . , σ ∗(N−1)} the optimalN-horizon
sensor schedule, i.e.,

σ ∗
= argmin

σ∈MN
JN(σ ).

For each j = 0, . . . ,N − 1, let σ ∗

j be the sensor schedule obtained
by removing the first j steps from σ ∗, i.e.,

σ ∗

j = {σ ∗(j), . . . , σ ∗(N − 1)}.
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Let {Σ̂∗

k }
N
k=0 be the optimal covariance trajectory, namely, Σ̂∗

k =

Σ̂σ∗

k , for k = 0, . . . ,N , and let γ ∗

k be the accrued cost of the first k
steps of the optimal covariance trajectory, i.e., γ ∗

k =
k

t=1 tr (Σ̂∗
t ),

k = 1, . . . ,N . Denote by β∗ the peak estimation error along the
optimal covariance trajectory, namely,

β∗ , max
k=1,...,N

∥Σ̂∗

k ∥. (16)

The following lemma is used to derive the desired error bound.

Lemma 4. For any k = 1, . . . ,N and ϵ ∈ R+, there always exists a
pair (Σk, γk) ∈ H ϵ

k satisfying the following inequalities:
Σk ≼ Σ̂∗

k +


In +

k−1
j=1

g
σ∗
j

k−j(Σ̂
∗

j ; In)


ϵ

γk ≤ γ ∗

k +


k +

k−1
j=1

k−j
l=1

tr (g
σ∗
j

l (Σ̂∗

j ; In))


ϵ.

(17)

Proof. For k = 1, Eq. (9) leads to

H ϵ
1 = ESϵ(hM(H0)) = ESϵ(H1).

Thus, the desired inequalities follow directly from Definition 4.
Suppose that the results hold for a general k ≤ N − 1 and let

(Σk, γk) ∈ H ϵ
k be thepair satisfying Eq. (17). It suffices to show that

there also exists a pair (Σk+1, γk+1) ∈ H ϵ
k+1 satisfying Eq. (17) for

k + 1. Define

Σ̃k+1 = ρσ∗(k)(Σk), and γ̃k+1 = γk + tr (Σ̃k+1).

Clearly, the pair (Σ̃k+1, γ̃k+1) ∈ hM(H ϵ
k ), but may not be in H ϵ

k+1
after applying ESϵ . Nevertheless, according to Definition 4, there
must exist a pair (Σk+1, γk+1) ∈ H ϵ

k+1 such that
Σk+1 ≼ Σ̃k+1 + ϵIn;
γk+1 ≤ γ̃k+1 + ϵ.

(18)

According to the induction hypothesis, Eq. (17), Theorem 4, and
Lemma 3,

Σ̃k+1 ≼ ρσ∗(k)(Σ̂
∗

k ) + ϵgσ∗(k)
1


Σ̂∗

k ; In +

k−1
j=1

g
σ∗
j

k−j(Σ̂
∗

j ; In)



= Σ̂∗

k+1 + ϵgσ∗(k)
1 (Σ̂∗

k ; In) + ϵ

k−1
j=1

gσ∗(k)
1 (Σ̂∗

k ; g
σ∗
j

k−j(Σ̂
∗

j ; In)).

Using Lemma 2, it can be easily verified that for each j = 1, . . . ,
k − 1,

gσ∗(k)
1 (Σ̂∗

k ; g
σ∗
j

k−j(Σ̂
∗

j ; In)) = g
σ∗
j

k+1−j(Σ̂
∗

j ; In).

Therefore,

Σ̃k+1 ≼ Σ̂∗

k+1 +


k

j=1

g
σ∗
j

k+1−j(Σ̂
∗

j ; In)


ϵ. (19)

By the induction hypothesis and Eq. (17),

γ̃k+1 = γk + tr (Σ̃k+1)

≤ γk + tr (Σ̂∗

k+1) + ϵ

k
j=1

tr (g
σ∗
j

k+1−j(Σ̂
∗

j ; In))

≤ γ ∗

k + tr (Σ̂∗

k+1) + kϵ

+ ϵ

k−1
j=1

k−j
l=1

tr (g
σ∗
j

l (Σ̂∗

j ; In))

+ ϵ

k
j=1

tr (g
σ∗
j

k+1−j(Σ̂
∗

j ; In))

≤ γ ∗

k+1 + kϵ + ϵ

k
j=1

k+1−j
l=1

tr (g
σ∗
j

l (Σ̂∗

j ; In)). (20)

Combining Eqs. (18), (19) and (20) yields the desired inequality in
Eq. (17). �

Theorem 6. Let η∗ be the constant defined in Eq. (15) with β∗ in
place of β . Then

1
N

(V ϵ
N − VN) ≤


nβ∗η∗

λ−
w(1 − η∗)

+ 1


ϵ.

Proof. It follows immediately from Lemma 4 that

V ϵ
N ≤ VN +


N +

N−1
j=1

N−j
l=1

tr(g
σ∗
j

l (Σ̂∗

j ; In))


· ϵ.

This together with Theorem 5 and the definition of β∗ yields the
desired inequality. �

The error bound derived above depends on the peak estimation
error β∗ of the optimal schedule. Although the exact value of β∗

is not available, there are many ways to upper bound β∗. For
example, β∗

≤ JN(σ ϵ,N) due to the following simple inequality

β∗ <

N
t=1

tr (Σ̂σ∗

t ) ≤

N
t=1

tr(Σ̂σ
t ), ∀σ ∈ MN .

Notice that regardless of the way of estimating β∗, the upper
bound given in Theorem 6 could be conservative. The particular
value of the bound may not be of crucial importance, however
its analytical form reveals several important properties of the
proposed suboptimal algorithm. First of all, the bound clearly
indicates that as the relaxation parameter ϵ → 0, the performance
of the suboptimal algorithm ALGOϵ approaches the optimal one
asymptotically with no performance gap. In addition, the error
in general grows only linearly as ϵ increases. These appealing
properties provide theoretical justifications for the suboptimal
algorithm developed in this section.

6. Numerical examples

6.1. 3D process with four sensors

Consider a sensor scheduling problem with horizon length
N = 50 and the following system matrices.

A =


−0.6 0.8 0.5
−0.1 1.5 −1.1
1.1 0.4 −0.2


, Σw =

1 0 0
0 1 0
0 0 1


,

C1 = [0.75 − 0.2 − 0.65], Σv1 = 0.53,
C2 = [0.35 0.85 0.35], Σv2 = 0.8,
C3 = [0.2 − 0.65 1.25], Σv3 = 0.2,
C4 = [0.7 0.5 0.5], Σv4 = 0.5.
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Fig. 4. Results for ϵ = {0.01, 0.1, 0.2, 0.5}. (a) Suboptimal sensor schedule.
(b) Number of matrices per time-step.

The brute force search for this problem would require to
explore about 1030 branches, which is not numerically tractable.
However, the problem can be efficiently solved using the proposed
suboptimal scheduling algorithm ALGOϵ . The algorithm is tested
with initial covariance Σ0 = I3 under 4 different relaxation
parameters ϵ = {0.01, 0.1, 0.2, 0.5}. For all these relaxation
parameters, the resulting suboptimal sensor schedule is the same
with the same cost function value 850.57. The obtained suboptimal
schedule is shown in Fig. 4(a). It is interesting to note that
the sensor schedule is periodic for the non-transient portion of
the schedule, with a repeating sequence of {4, 1, 4, 2, 1, 2, 3}.
Counter-intuitively, even though sensor 2 has a significantly larger
sensor noise, it is used more than sensor 3 which has the smallest
noise. One reason for this is because sensor 2 provides the most
direct information about the 2nd dimension of the state. In
addition, Fig. 4(b) shows the number of branches in the search tree
per time-step for ϵ = {0.01, 0.1, 0.2, 0.5}, which saturates around
166, 43, 25 and 18, respectively. It can also be seen that the number
of branches in the search tree typically saturates around a smaller
number for a larger ϵ.

6.2. Examples with randomly generated matrices

To further demonstrate its performance, the suboptimal
algorithmALGOϵ is tested using 100 random instances of the sensor
scheduling problem with M = 3 sensors and state dimension
n = 4. A relatively small horizon length N = 14 is chosen
for which the brute force search approach can be carried out to
compute the ground truth to examine the cost performance of
ALGOϵ . In generating the random systems, the pair (A, Ci), ∀i ∈ M,
was restricted to be unobservable, with the exception that if all
the sensors were used at once then the system would be fully
observable. The rationale for this restriction was to coerce the
optimal solution to switch between sensors instead of only using
one sensor for the entire time horizon. The noise for each sensor,
Σvi , was randomly chosen from a uniform distribution between (0,
1), the initial covariancewasΣ0 = 0.1I4 and the process noise was
Σw = I4.

For each problem, both the optimal solution and the suboptimal
solutions under 10 different relaxation values ϵ = {0.1, 0.2, . . . ,
1.0} are calculated. Fig. 5(a) displays the percentage of the
solutions that is optimal for each ϵ. As ϵ is increased there is a
slow decrease in the number that is optimal. Fig. 5(b) displays the
mean and maximum percentage of the final cost over the optimal
solution for each ϵ. For all ϵ, the solution is well within 0.5% of the
optimal objective function value for most of the instances and is
closer to optimal as ϵ is decreased. Fig. 5(c) shows the number of
branches in the search tree at the final time-step. As ϵ increases,
fewer branches are needed to represent the search tree, and even
an ϵ = 0.1 requires on average four orders of magnitude fewer
branches than brute force enumeration. The figure suggests that
the general trend for both the mean and maximum values is an
exponential decay as ϵ increases.

7. Application in active mapping

One motivating application of this sensor scheduling frame-
work is in simultaneous localization and mapping (SLAM) which
is a fundamental task in robotics (Thrun, 2002). SLAM is concerned
with constructing a globally consistent model of the environment
and consists of a vehicle navigating through and sensing an un-
known environment. Examples of typical sensor readings used are
monocular or stereo camera images and 2D/3D point clouds. By
combining the robot’s odometry measurements and the environ-
ment measurements a globally consistent map of the environ-
ment can be generated by solving a nonlinear estimation problem.
Typically,most approaches are only concernedwith the estimation
process and the robot is manually guided through the unknown
environment. These approaches, however, neglect how the con-
trol inputs and/or trajectory for the robot affects the quality of the
map, even though it can have a dramatic effect. In this example,
the design of the control inputs to minimize the total estimation
error is investigated. Previously, Ny and Pappas (2009) proposed
a simple suboptimal greedy solution technique which employed
forward value iteration and a myopic heuristic pruning algorithm.
The method proposed in Ny and Pappas (2009) can be considered
an instance of the proposed algorithm in thisworkwith an ϵ = ∞.
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Fig. 5. Performance of the suboptimal algorithm for different ϵ. (a) The percentage of solutions for the suboptimal algorithm that is the optimal solution. (b) Mean and
maximum relative error, in percentages, between the suboptimal and optimal solution for each ϵ. (c) The mean and maximum number of branches in the search tree at the
final time-step for each ϵ.
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Feature

Sensing range

Fig. 6. An illustration of the active mapping problem. There are features scattered
throughout the environment with known locations and the robot can receive noisy
measurements of them when it is within sensing range.

This example illustrates the active mapping problem in Fig. 6,
which is concerned with planning trajectories for the robot
through the environment to acquire the best map. To investigate
how the navigation of the robot affects the quality of the map, the
environment is assumed to be composed of M distinct features
with known locations. These features have an unknown quantity
associated with them, for example air quality, and the robot can
acquire a noisy measurement of it when in sensing range. The
measurements of the features are corrupted by additive Gaussian
noise and the noise characteristics depend upon the state of
the vehicle, i.e. the further the vehicle is away from the feature
the noisier the measurement is. Therefore, different trajectories
through the environment will result in different measurement
sequences resulting in varying map qualities. Finding the best
trajectory through the environment can be transformed to a sensor
scheduling problem because each location in the environment
has different sensing characteristics. The active mapping problem
can be formulated as the following optimization program (Ny &
Pappas, 2009),

minimize
uk, ∀k∈[0,N−1]

tr(Σ̂N)

s.t. sk+1 = f (sk, uk)

Σ̂k+1 = AΣ̂kAT
+ Σw − Q (sk+1)R(sk+1)

−1Q T(sk+1)

where sk is the state of the vehicle at time-step k, f (·) is the
dynamics of the vehicle, C(s) is defined as the sensormeasurement
characteristics at the vehicle state s, Q (·) is defined as Q (sk+1) =

AΣ̂kCT(sk+1), R(·) is defined as R(sk+1) = C(sk+1)Σ̂kCT(sk+1) +

Σv(sk+1), and Σv(s) is the measurement noise of the sensor at the
vehicle state s. The optimization variables are the control inputs,
uk, at each time-step.

In previous sections it was assumed that the set of available
sensors remains the same for each time-step, which is not the case
in this active mapping example. Only nodes corresponding to the
same state of the vehicle have the same sensors available. Even
though the sensors are now state dependent, the proposed pruning
algorithm still applies. Using similar notation as introduced in the
previous sections, a node is re-defined to include the state of the
vehicle, i.e. (Σ, γ , s). Similarly, the Riccati mapping is now defined
as,
ρu(Σ̂k, sk) = AΣ̂kAT

+ Σw

−Q (f (sk, u))R(f (sk, u))−1Q T(f (sk, u)),

and the characteristic sets are now generated via,

Hk+1 = hU(Hk) from H0 = {(Σ0, 0, s0)} with
hU(H) = {(ρu(Σ, s), tr(ρu(Σ, s)), f (s, u))

: (Σ, γ , s) ∈ H, u ∈ U(s)}.

where U is the set of all inputs and U(s) is the set of feasible
inputs at state s. Let H(s) be all of the sets in H with state s. Now
the active mapping problem is formulated as a sensor scheduling
problem in Algorithm 3. The solution procedure is the same as
before except for lines 5–7 which applies the pruning algorithm
for all sets at the same state. The pruning algorithm can no longer
be applied to all the sets in Hk because not every path will have
the same set of sensors available to it over the remaining time-
steps. Consequently, the pruning algorithm can only be applied to
the sets with the same state.

Algorithm 3 Active Mapping Algorithm
1: H0 = {Σ0, 0, s0}
2: for k = 1, . . . ,N do
3: H̄ = hU(Hk−1)
4: Hk = ∅

5: for all s do
6: Hk = Hk ∪ ESϵ


H̄(s)


7: end for
8: end for
9: u∗

= argmin
j∈{1,...,|HN |}

γN(j)

The results from the proposed algorithm are illustrated through
numerical simulations. The environment is represented as a grid
world and the vehicle can move to its neighboring positions
on the grid. At each time-step, the vehicle can take a noisy
measurement of the feature if its location is within the sensing
range of that feature. The sensor noise model is assumed to be an
affine function of the distance from the feature. In the examples
presented, the planning horizon is N = 50. The pruning algorithm
was implemented in C++ using the semidefinite programming
algorithm SDPA (Fujisawa, Kojima, Nakata, & Yamashita, 1995).

Fig. 7 compares the greedy heuristic method and the numeri-
cally redundant pruning algorithm with an ϵ = 0.1. The objective
function obtained for the greedy method is 0.88 and the redun-
dant pruning method is 0.69. The objective function for the sim-
ple greedy, myopic policy is over 27% larger than the solution with
ϵ = 0.1. Figures (a)–(b) show the output of the greedy heuristic
method and the numerically redundant pruning algorithm, respec-
tively. The feature locations are indicated by the crosses and the
maximum sensing range is shown by the circles. The solid line is
the trajectory of the vehicle through the environment. Given the
myopic nature of the greedy policy, it navigates the vehicle along
the area in which the sensing regions overlap; in contrast, the so-
lution for the numerically redundant method deviates away from
this area and navigates closer to the features which reduces the
overall uncertainty. Figures (c)–(d) show the number of branches
at each time-step for each method. For ϵ = 0.1, the number
of branches increases exponentially until time-step 35 and then
decreases.

8. Conclusions

This work has studied the sensor scheduling problem by
deriving a condition under which an initial schedule is not part
of the optimal solution. Using this condition, two algorithms were
devised, which provide the optimal and suboptimal solutions, to
prune the search tree to enable the solution of larger systems and
longer time horizons. The algorithms trade off the quality of the
solution and the complexity of the problem. A bound on the quality
of the solution from the suboptimal algorithm was also provided.
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Fig. 7. (a)–(b) The solution from the greedy heuristic method and the numerically redundant pruning method with an ϵ = 0.1, respectively. The feature locations are
indicated by the crosses and their sensing radii are shown by the circles. The solid line is the solution of the vehicle’s path through the environment. (c)–(d) Number of
branches at each time-step for greedy heuristic and the numerically redundant pruning methods, respectively.

While the problem of choosing only one sensor at each time-
step is presented, the algorithms developed are also applicable to
the case of selecting multiple sensors at each time-step. In this
case, the problem’s complexitymayprevent solving for the optimal
solution. However, the suboptimal algorithm can address this by
allowing for more error in the solution of the problem which will
reduce the complexity of the problem.

There are several interesting areas of future work that the
authors wish to explore. First, it has been previously noticed that
the sensor schedules tend to be periodic for the non-transient
portion of the schedule. The authors would like to analyze this
behavior to determine conditions for the periodicity and a bound
for the objective function if the periodic schedule were used. This
might allow for early termination of the algorithm if the best
schedule so far were periodic. Second, the authors want to extend
these methods to consider the case in which the sensors depend
on the state of the system. Lastly, another extension of interest is
to modify the objective function to include a direct measure of the
power consumption of each sensor.

Appendix. Proof of Theorem 5

Lemma 5 (Schur Complement Lemma). Suppose that Z1, Z2 and Z3
are respectively, n1 × n1, n1 × n2 and n2 × n2 dimensional matrices
and that both Z1 and Z3 are nonsingular. Define

Z =


Z1 Z2
ZT
2 Z3


, S1 , Z1 − Z2Z−1

3 ZT
2

and S2 , Z3 − ZT
2 Z

−1
1 Z2.

Then Z ≻ 0 ⇔ S1 ≻ 0 and Z ≻ 0 ⇔ S2 ≻ 0.

Fix arbitrary Σ ∈ A, N ∈ Z+ and σ ∈ MN . Let β be a constant
satisfying the condition stated in Theorem 5. For simplicity, let
Σ̂t := Σσ

t (Σ), K̂t = Kσ(t)(Σ̂t), and Ât := A − AK̂tCσ(t). It can

be shown (Moore & Anderson, 1980) that the Riccati recursion
formula in Eq. (6) can be equivalently written as:

Σ̂t+1 = Σw + ÂtΣ̂t ÂT
t + AK̂tΣvσ(t) K̂

T
t A

T , (A.1)

for t = 0, . . . ,N−1. Notice that Σ̂t ≽ Σw ≻ 0 for all t ≥ 1. Define

Q̂t = Σ̂−1
t , ∀t = 1, . . . ,N. (A.2)

Lemma 6. For each t = 1, . . . ,N − 1,

Q̂t − ÂT
t Q̂t+1Ât ≽ αIn,

where α is defined in Eq. (15).

Proof. By the hypothesis in Theorem 5, λ−
w In ≼ Σ̂t ≼ βIn, for all

t = 1, . . . ,N , which implies

1
β
In ≼ Q̂t ≼

1
λ−

w

In, ∀t = 1, . . . ,N. (A.3)

Therefore, αIn ≼ αβQ̂t and thus Q̂t − αIn ≽ (1 − αβ)Q̂t . Since
αβ < 1, it follows that

Ât(Q̂t − αIn)−1ÂT
t ≼ (1 − αβ)−1Ât Q̂−1

t ÂT
t

= Ât Q̂−1
t ÂT

t +


1

1 − αβ
− 1


Ât Q̂−1

t ÂT
t

≼ Ât Q̂−1
t ÂT

t +
αβ2

1 − αβ
In

= Ât Q̂−1
t ÂT

t + λ−

w In, (A.4)

for t = 0, . . . ,N − 1, where the second last step follows from
Eq. (A.1) and the fact that Σ̂t+1 ≼ βIn. Furthermore, Eq. (A.1)
leads to

Σ̂t+1 − ÂtΣ̂t ÂT
t ≽ λ−

w In,
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which in turn implies

Q̂−1
t+1 − Ât Q̂−1

t ÂT
t ≽ λ−

w In.

This together with (A.4) yields

Q̂−1
t+1 − Ât(Q̂t − αIn)−1ÂT

t ≽ Q̂−1
t+1 − Ât Q̂−1

t ÂT
t − λ−

w In
≽ 0.

By Lemma 5, this indicates that
Q̂−1
t+1 Ât

ÂT
t Q̂t − αIn


≽ 0.

Using Lemma 5 again yields Q̂t − αIn − ÂT
t Q̂t+1Ât ≽ 0. �

Proof of Theorem 5. Let Σ̂t , Ât , Q̂t be the same as defined in the
proof of Lemma 6. For each l = 1, . . . , n, let ξ (l)(t) be the solution
of the following linear time-varying system:

ξ (l)(t + 1) = Âtξ
(l)(t), t = 0, . . . ,N − 1, with ξ(0) = u(l)

where u(l) denotes the standard unit vector in Rn with value 1 at
the lth position and zeros elsewhere. By Lemma 2, it can be easily
verified that

tr (gσ
t (Σ; In)) = tr


n

l=1

(ξ (l)(t))(ξ (l)(t))T


=

n
l=1

∥ξ (l)(t)∥2.

For each l = 1, . . . , n, consider the Lyapunov function defined by:

L(l)
t , ξ (l)(t)T Q̂tξ

(l)(t), for t = 0, . . . ,N.

By Lemma 6, for each t = 0, . . . ,N − 1, it follows that

L(l)
t − L(l)

t+1 = (ξ (l)(t))T (Q̂t − ÂT
t Q̂t+1Ât) (ξ (l)(t))

≥ α∥ξ (l)(t)∥2
≥ αλ−

wL
(l)
t .

This also implies that L(l)
t is non-increasing. Thus, L(l)

t − L(l)
t+1 ≥

αλ−
wL

(l)
t+1. Hence,

L(l)
t+1 ≤

1
1 + αλ−

w

L(l)
t ≤ ηt+1L(l)

0 .

This together with (A.3) implies that for t = 0, . . . ,N ,

∥ξ (l)(t)∥2
≤ βL(l)

t ≤ βηtL(l)
0 ≤

β

λ−
w

ηt
∥u(l)

∥
2

=
β

λ−
w

ηt .

Therefore, tr (gσ
t (Σ; In)) =

n
l=1 ∥ξ (l)(t)∥2

≤
nβ
λ−
w
ηt . �
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