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Abstract—In this paper, we prove that a discrete-time Recently, stabilization of nonautonomous switched lin-
switched linear system is exponentially stabilizablef and only  ear systems through both switching control and continuous
if there exists a stationary hybrid-control law that consists control has also been studied ([6], [10], [11], [12]). The

of a homogeneous switching-control law and a piecewise- thod tlv direct extensi fth itchi t
linear continuous-control law under which the closed-loop MENOAS aré mostly direct extensions of the switching sta-

system has apiecewise quadratic Lyapunov function. Such  bilization results for autonomous systems. By associdating
a converse control-Lyapunov function theorem justifies mag  each subsystem a feedback gain and a quadratic Lyapunov

of the earlier controller-synthesis methods that have adoged  function, the stabilization problem is also formulated as a

piecewise-quadratic Lyapunov functions and piecewiseflear  mayix inequality problem, where the feedback-gain masic
continuous-control laws for convenience or heuristic reasns. . .
are part of the design variables.

Furthermore, several important properties of the proposed i _ )
stabilizing control law are derived and their connections b The extensive use of various Lyapunov functions has

other existing controllers studied in the literature are discussed. sparked a great interest in the study of the converse Lyapuno
function theorems for switched linear systems. In [13],][14
it is proved that the exponential stability of a switched
linear system undearbitrary switchingis equivalent to the
The stabilization problem of switched systems, especiallyxistence of a piecewise quadratic, or a piecewise linear,
autonomous switched linear systems, is receiving inangasior a smooth homogeneous common Lyapunov function. A
research attention in recent years ([1], [2]). Many exiptin converse control-Lyapunov function theorem is also derive
results approach the problem by searching for a switchirig [15] for a switching-stabilizable uncertain switcheddar
strategy and a Lyapunov or Lyapunov-like function with desystem. Although the piecewise quadratic Lyapunov fumctio
creasing values along the closed-loop system traject8ly ([ has been widely used in studying the stabilization problem,
[4], [S], [6]). The main idea is first to parameterize theits existence has not been proved for general exponentially
switching strategy and the Lyapunov-like function in termsstabilizable switched linear systems.
of certain matrices and then to translate the Lyapunov or pespite the extensive literature in this field, some funda-
multiple-Lyapunov function theorem into matrix inequil.  mental questions regarding the stabilization of a switched
If the solution of the matrix inequalities defines a quadratijjnear system remain open. As stated in [16], “necessary
common Lyapunov function under the proposed switchingnd sufficient conditions for the existence of a general
strategy, then the system is calleghadratic stabilizable (not necessarily quadratic) stabilizing feedback styaimg
It is proved in [3], [7] that the quadratic stabilizability i not known”. In this paper, we derive an answer to this
equivalent to the strict completeness of a certain set of sympen problem. Our main contribution is the proof of the

metric matrices. From a different perspective, in [8], [8]s  equivalenceof the following statements for a discrete-time
shown that the system is quadratic stabilizable if theretexi switched linear system:
a stable convex combination of the subsystem matrices. The
main limitation of these results is their conservatism. Wlan (
switched linear systems are asymptotically or exponédntial
stabilizable without having a quadratic common Lyapunov, ...
function ([2]). In [4], a piecewise quadratic structure is (il
adopted for the Lyapunov function. By taking a so-called
“largest-region-function switching strategy”, the steaition
problem is formulated as a bilinear matrix inequality (BMI)
problem and some heuristics are proposed to solve the BMIThe equivalence of the above statements constitutes a
problem numerically. conversegiecewise-quadratic control-Lyapunov function the-
orem(Theorem 2), which has not been shown yet in the lit-
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|I. INTRODUCTION

i) The system is exponentially stabilizable;

(i) There exists a piecewise-quadratic control-Lyapunov
function;

There exists a stationary exponentially-stabilizing
hybrid-control law that consists of a homoge-
neous switching-control law and a piecewise-linear
continuous-control law.



reasons. exists a policyr such thati” andr satisfy all the conditions
This paper is organized as follows. The main results are Theorem 1.
stated as Theorem 2 and Theorem 3 in Section Il. Then, theBy Theorem 1, the existence of a control-Lyapunov
two theorems are proved in Sections Ill and IV, respectivelfunction is a sufficient condition for the stabilizabilityf o
Some concluding remarks are given in Section V. system (1). The main goal of this paper is to show that
this condition is also necessary and more importantly, that
the control-Lyapunov function can always be chosen to be
We consider the discrete-time switched linear systemsiecewise quadratic and that the corresponding stakilizin
described by: policy can always be made stationary with a homogeneous
B n switching-control law and a piecewise-linear continuous-
ot +1) = Ayyz(t) + Boyult), t € 27, () control law. In other words, we shall prove the following
whereZ* denotes the set of nonnegative integefs) € R»  theorems.
is the continuous statey(t) € M £ {1,..., M} is the Theorem 2:System (1) is exponentially stabilizable if and
switching control that determines the discrete mode, ar@hly if there exists a piecewise-quadratic control-Lyapun
u(t) € R? is the continuous control. The sequence of pairfinction, hereby referred to as PQCLF.
{(u(t),v(t))}2, is called thehybrid-control sequencéd-or Theorem 3:System (1) is exponentially stabilizable (by
eachi € M, A; and B; are constant matrices of appropriatean arbitrary feedback policy) if and only if it is exponeffigia
dimensions and the paitd;, B;) is called a subsystem. stabilizable by a stationary feedback policy that consi$ts
The most general way of making a control decision i©lomogeneous switching-control law and a piecewise-linear
through the time-dependent (state-feedback) hybridrobnt continuous-control law.
law, namely, the functiog; = (u;, ;) : R® — RP x M that The proofs of Theorems 2 and 3 can be found in Sec-
maps each continuous state to a hybrid-control action thabns III-C and IV-A, respectively.
may vary with timet. Here,i; : R™ — RP andy; : R — M
are called th¢state-feedback) continuous-control lawd the I1l. A CONVERSEPQCLF THEOREM
(state-feedback) switching-control lawespectively, at time
t € Z*. A sequence of hybrid-control laws constitutes an This section is devoted to proving Theorem 2. The proof is
infinite-horizon feedback policyr = {&,&1,...,...}. A based on a connection between the exponential stabilizatio
policy # = {¢,€,...} with the same control lavg; = ¢  problem and the switched LQR problem [18], [19]. Before
at each timet is called astationary policy If system (1) is proving the theorem, we first briefly review some of the
driven by a feedback policy, then the closed-loop dynamics key results for the switched LQR problem. Interested remder
is governed by are referred to [18], [19] for an in-depth discussion on the
switched LQR problem.

Il. PROBLEM STATEMENT

2(t+1)= Ay, () Z()+ By, e (2(t), t e ZT. (2)

The exponential stabilization problem is to find a policyA. The Switched LQR Problem

7w under which the trajectory(t) of system (2) originating let Q; = QT = 0and R = RT » 0 be the

from any initial stater(0) = = satisfies: weighting matrices for the state and the control, respelgtiv

lz(®)]1? < act||z|?, Vt € Z7, (3) for subsystem € M. Define the running cost as

for some constanta > 1 and0 < ¢ < 1, where|| - || L(z,u,v) = 27 Quz + u” Ryu, (4)
denotes the standard Euclidean norniRih If such a policy

exists, then system (1) is calledponentially stabilizableAs  for € R™,u € RP,v € M. Denote byJ(z) the total cost,
a standard result of Lyapunov theory, a sufficient conditiopossibly infinite, starting from:(0) = z under policyr, i.e.,
for the exponential stabilizability is the existence of the

following Lyapunov function. Jr(z) = ZOO L(x(t), pe(z(t)), ve(2(¢))). (5)
Theorem 1 ([17]): Suppose that there exist a poligyand =0
a nonnegative functioly : R* — R™T satisfying: Define V*(z) = infren Jx(2). Since the running cost is
(i) r1]lz]|* < V(2) < kallz|]? for any » € R™ and some always nonnegative, the infimum always exists. The function
finite positive constants; and «; V*(z) is called theinfinite-horizon value functiart will be

(i) V(x(t) = V(x(t+1)) = rs||=(t)]* for anyt € Z*  infinite if .J,(z) is infinite for all the policiesr € II. As a
and some constant; > 0, wherez(-) is the closed- natural extension of the classical LQR problem, Biscrete-

loop trajectory of system (2) under poliay. _ time Switched LQR problef®SLQR) is defined as follows.
Then §ys_tem (D)is exponer_mally sta_b|l|zable by the poi_rcy Problem 1 (DSLQR problem)For a given initial state
Definition 1: A nonnegative functiorl’ : R* — RT is € R", find the infinite-horizon policyr € TI that
called acontrol-Lyapunov functiorof system (1) if there minimize,sJ (2) subject to equation (2)

lin this paper, the variable € R™ denotes a generic initial value of ) Dynam|c programming solves the DSLQR problem by
system (1). introducing a sequence of value functions. Define fte



horizon value functio/y : R" — R as: Remark 1:Clearly, for any finite N, the value function

N—1 Vn is a piecewise quadratic function. It will be shown that
Vn(2)= inf { Z L(I(t),u(t),v(t))‘ if the system is exponentially stabilizable, then there tmus
u()eRD oMM LIS exist a finiteV such thatl/y is a control-Lyapunov function

of system (1).

subject to (1) With:c(O)_z}. (6) .
B. V* as a Control-Lyapunov Function
For any functionV : R* — R* and any control lawt = It is a well-known result that if a linear time-invariant
(u,v) : R™ — RP x M, denote byZ the operator that maps system is stabilizable, then the infinite-horizon valuection
V' to another functiorZ, [V'] defined as: of the corresponding classical LQR problem is a control-
Lyapunov function. This subsection generalizes this tesul
T[VI(2) = L(z, u(2), v(2)) to the switched linear system case. We shall show that if

+ V(Ay2)z + By»u(2)), V2 € R". (7)  system (1) is exponentially stabilizable, then the infinite

Similarly, for any function’ : R" — R+, define the operator 0izon value functiort” of the DSLQR problem must be

T by a control-Lyapunov function of system (1).
. We first introduce some notations. Denote Xy, (-) and
T[V](2) :ueﬁEEGM{L(z’U’U) Amax(-) the smallest and the largest eigenvalue of a p.s.d.
+V(A,z + Bvu)}, VzeR". (8) matrix. Define
- . . . JF _ .
The equation defined above is called thee-stage value AQ _%ﬁl{/\mm@l)}’ Ag = %ﬁ({/\max(@)}’
iteration of the DSLQR problem. We denote by* the An ZHéiN%{/\min(Ri)}, AL = I_Ié%/i({/\max(Ri)}a

composition of the mappin@ with itself k£ times, i.e.,
TFV(z) = T[T*'[V]](z) for all k € ZT and z € 0_+_max{ /\ (A.TA-)}.
R". Some standard results of Dynamic Programming are AT iem e

summarized in the following lemma. Denote by}, ¢ M the set of indices of nonze matrices,
i.e.,Ih = {ieM:|B| #0}. Leto!, (-) be the smallest

Lemma 1 ([20]): Let Vi (2) = 0 for all z € R™. Then .
() Vn(z) = TZZ [Vol(2) for all N EHZ+ andz € R™; positivesingular value of a nonzero mgtrix.lg # (), define
(i) Vn(z) — V*(z) pointwise inR™ as N — oo. 6p = min,_+{o". (Bi)}. SinceR, - 0 for eachv € M,
(i) The infinite-horizon value function satisfies the Bell by Lemma 1 there must exist a hybrid-control lawsuch
man equation, i.e7 [V*](z) = V*(z) forall z e R". Te-[V¥](2) = V*(2), ¥z € R™. Then, the policyr* =
(iv) If R, = 0 for all v € M, then there exists a stationary{g* ¢*,...} is thestationary optimal policy
Oft'mal policy, €., there exists a hybr:ld-control law ™" 5y first task is to relate the exponential stabilizability t
£ such thatZe-[V*](2) = V*(2), ¥z € R™. the boundedness of the value functigri. In particular, we
_ To derive the value function of the DSLQR problem, W&t 15 show that the exponentially stabilizability imlie
introduce a few ?eﬂr;;tlons. Denote by = A — A the ypat y+(2) < g2|)? for all z € R™ and some constant
Riccati Mappingof subsystem € M, i.e., 8 < co. The main challenge here is that the stabilizing policy
pi(P) =Q; + AT PA; may employ a continuous control sequemte) whose norm _
— ATPBy(R: + B'PB:)"'B'PA;.  (9) does r_lot converge to zero exponentially fast. Qur §trategy i
to project out the component of eactft) that lies in the
Definition 2: Let 24 be the power set ofl. The mapping null space ofB,;) and show that the norm of its orthogonal
pu @ 24 — 24 defined by:pm(H) = {pi(P) : i € part converges to zero exponentially fast. To this end, the
M andP € H} is called theSwitched Riccati Mapping following lemma is needed.
associated with Problem 1. Lemma 2:Let B € R"*P be arbitrary butB # 0.
_ Definition 3: The sequence of set§Hy};, generated Then for anyu € R” in the column space oB”, ie.,
iteratively by Hiy1 = pm(Hy) with initial condition o = « € col(BT), we must havelu|| < ||Bul|/o;. (B).
{0} is called the Switched Riccati Setsissociated with Proof: The result follows immediately whe® has a
Problem 1 o _ full column rank. Suppose tha® is not full column rank.
The switched Rlccatl_sets always start fron_1 a smgletoq sely the theory of singular value decomposition, there exists
{0} and evolve according to the switched Riccati mappinQunitary matriced/ = [U;, U] andV = V4, V5] such that
For any finite NV, the setHy consists of up taV/ "V p.s.d.

matrices. An important fact about the DSLQR problem is B = [Uy,Uy] [ % 8 } { “;1; }
that its value functions are completely characterized lgy th 2
switched Riccati sets. Since the column spacel(B7) is the orthogonal comple-
Theorem 4 ([21]): The N-horizon value function for the ment of the null space oB, we haveViu = 0. Thus,
DSLQR problem is given by ul| = ||[VTu|| = |V u|. Therefore,
VN(Z) = minpeHN ZTPZ, (10) HBUHQ:uT‘/lEQVITu2Ur-;in(B)qulTuHQ:Ur-;in(BV”u”Q'



Thus|ju|| < ||Bul|/ol;.(B). [ ] Proof: Suppose that system (1) is exponentially sta-
With the above lemma, we are able to relate the exponehilizable. By Lemma 3,V* satisfies the first condition of
tial stabilizability to the boundedness bf*. Theorem 1. By the definition of*, V*(z) = T¢+[V*](2).
Lemma 3:Suppose that system (1) is exponentially staThis implies that
bilizable. Then there exists a positive constdnt oo such . ) .
that Ay |[2 < V*(2) < Bl|z|12, for all = € R™. Vi(2) = VH(Aue 2y + B2y 1" (2))
Proof: Let z € R™ be arbitrary and fixed. Obviously, :zTQ,,*(Z)Z + [/L*(Z)]TRV*(Z)[M*(Z)]
V*(z) can be no smaller than the one-step state cost, which
implies V*(2) > A, |z||*. To prove thatV*(z) < g|z* , _ _ _
let 7 = {(1u, 1) }52, be an exponentially stabilizing policy. Hence,V* is a control-Lyapunov function of system (1) with
By (3), the closed-loop trajectory(t) with initial condition @ stationary stabilizing policy* = {£*,£*,...}. =
x(0) = = satisfies||z(t)]|2 < act||z||?, for somea € [1,00) By this theorem, whenever system (1) is exponentially
andc € (0,1). Thus, >, [|=(t)]|* < 12 |2|/>. Denote by stabilizable, the optimal policyt* is stabilizing andV *(z)

(u(t),v(t)) the hybrid-control sequence generatedmy.e., is a control- L_yapur_wov functlon However, the functlw
u(t) = pe(z(t)) andw(t) = vy (z(t)). If I} = 0, thenu(t) mMay not be piecewise quadratic. To prove Theorem 2, in the

can be chosen to be zero for each 0. Thus, next section we shall find an approximationiof which is
o\t piece_wise guadratic yeF close enoughtdso that it remains
Z 2T (1) Quea(t) < QC 2|2, a valid Lyapunov function.
C. Proof of Theorem 2
which is the desired result with = . We now suppose  SinceV* is a control-Lyapunov function, roughly speak-
that I}t # (), which implies thato—B > 0. Define a new ing, any function that is uniformly close t&* will also
control sequence be a control-Lyapunov function. By part (i) of Lemma 1,
. the finite-horizon value functioriy, which is piecewise
~ 0, if Bu(t) =0, . . . * .
a(t) = ) qguadratic, converges pointwise #6* as N — oo. This
{[“(t)]BT( |+ Otherwise motivates us to usé/y to approximateV* for large N.

where[-]zr denotes the projection of a given vector ontg Jo guarantee that’y will eventually become a Lyapunov
v(t) T function, we shall first ensure that the convergenc&pfto

the column space oB, Thenu(~) aft) is in the null -5 niform on a compact set, say the unit ball.

space ofBy ), lmplylng thaf[Bv(t)u(t) = Byu(t). Asa  thegrem 6 ([22]):1f V*(z) < B]|z||* for somef < o,

result, under the new hybrid control sequeri@ét), v(t)), -

then
the closed-loop trajectory is stilt(¢). Since (u(t),v(t)) is
just one choice of the hybrid control sequence, we have [V, (2) = Vn(2)| < améVHzHQ, (12)
= . for any Ny > N > 1, where

REPILCORICRC) Y=t .

_ 1 - Ja
< /\+ YT IO AD gy s s, L oand ap =maxl 5 (L9)

Z = 0 By this theorem, for largeV, VV* can be approximated

by Vi uniformly well on any compact set. As a result, the

Furthermore, by Lemma 2, we have ] i
optimal control lawé* can also be approximated ki,

Z Q][ 52 ()| which is defined by:
< = o 1B
==z Z | Booyu(t)]| En(2) = (pn(2),vn(2))
AL ) 2 arginf {L(z,u,v) + Vn(Ayz + Byu)}  (14)

wERP veM

AQZ (e +1) Av@x(t)n?

Let 7y £ {¢n, €N, ...} be the stationary policy generated

< 2 ac 9 by Viv. Due to the convergence &fy to V*, the policyn
=52 |1- .t (03)° 2| Il will eventually become a stabilizing policy.
2Q[C+ (UA) ] _ Proof: [Proof of Theorem 2] ?y Lemma 1 and equa-
S 2= I [E1 | tion (14), we know thatVni1(z) = Z¢y[Vn](z), for all
7B z € R™, This implies that
This inequality together with (11) yields the desired réesul
n Vni1(2) = VN (Auy ()2 + Buy (2 inv (2))
We now prove the main theorem of this subsection. =2"Quy ()% + N (2)T Ryy oy pin (2)

Theorem 5:If system (1) is exponentially stabilizable,
then the infinite-horizon value functiovi*(z) is a control-
Lyapunov function of system (1) with a stabilizing policyBy Lemma 3, the exponential stabilizability implies the
I A S existence of a positive constafit< oo such thatV*(z) <

> Mgzl (15)



Bllz||%, ¥z € R™. Let y3 and ag be defined in terms off ‘DQN(PIJ) [ ENGERRENGE) -QN(PZ,Z)‘
as in (13). By Theorem 6/ 11(2) < Vi (2) + agyh ||2]1%.
Substituting this inequality into (15) yields tr
0.8

VN (2) = V(Auy ()2 + Buy (v (2))
> (Ag —agnd)llzl*.

0.6

0.4

Sincevg < 1 and Ag >0, there must be a finite integer 02}

Ny such that()\g2 — oamé\’) > 0 for all N > Ny. Therefore, ol

for all N > Ny, the stationary policyry is exponentially o

stabilizing andVy is a PQCLF. [ |
The above proof is constructive. It not only shows the o

existence of a PQCLF, but also indicates that the stabgizin o6y

policy and the PQCLF can be chosen to g and Vy, 08}

respectively. We point out this important fact in the foliogy b

corollary.
Corollary 1: If system (1) is exponentially stabilizable, “h 708 706 704 102 0 02 04 06 08 1

then there exists a finite integ8fy such that for allv > Nj,
Vn is a PQCLF of system (1) with a stationary stabilizing
feedback policyry.

Fig. 1. Typical Decision regions

IV. THE STATIONARY STABILIZING FEEDBACK PoLicy  f(2) = 27 piy()(Pn(2))z, where Py(z) andin(z) are

By Corollary 1, if system (1) is exponentially stabilizaple defined in (18). -

then it must be stabilizable byy = {&n,&w, ...} for all We now prove Theorem 3.

large N. In this section, we will prove Theorem 3 and derivetain :;%2‘;;/[?;22;0;2 ?ﬁ;:fsm tﬂj:ﬂﬁﬁgﬂ;{g a(m;jM (EO;])'
important ties of the poliay . ) y SIS, NAZ), i iZ
Some important properties ot the poliayy in (14) must be piecewise constant. Hence, by (16), we know

A. Proof of Theorem 3 that un is piecewise linear andy is homogeneous. This

Due to the special structure of the value function alPgether with Corollary 1 implies Theorem 3. u
given in (10), the control lawfy defined in (14) can be
characterized analytically.

Theorem 7:The control law defined in (14) is given by:  For each paifP, i) € Hy x M, define a subset &&" as:

B. Properties offy

N(Z) = UNn(7), VN(Z N(Pi)={z € : ,i:argminzpsAz.
En(z) = (un(2),vn(2)) Qn (P R" : (Pi)= TP (20)
= (—Kine) (Pn(2)) - 2,in(2)),  (16) PETLN 1et
where K;(P) denotes the Kalman gain of subsystefior a  1he setQy (P, i) such defined is called decision region
given p.s.d. matrixP, i.e. associated withty in the sense that the points within the
R same decision region correspond to the same pair of feedback
Ki(P) £ (R + B/ PB;) "' B/ PA,. (17)  gainK;(P) and switching control under the control lawgy .

According to (20), a decision region must be a homoge-

and AP )
neous cone. This implies that the control Igw is also ho-
(Pn(2),in(2)) = argmin 2T pi(P)z. (18) mogeneous. Furthermore, it follows immediately from (14)
PeM N icM that the continuous-control layy is piecewise linear with

Proof: To find £x, we need to solve the following

optimization problem: a constant feedback gain within each decision region. Note

that a decision regiofly (P, i) may be disconnected except

f(2)%2 inf [ min v Riutz7Q;z at the origin0 and the union of all the decision regions covers
ueRP,ieM L PeH N the entire spac®". For example, ifM = {1,2} and Hy
+ (Aiz+Biu)TP(Aiz+Biu)} contains two matrices?, and P, then there will be four
conic decision regions as shown in Fig. 1.
= _ min {ZTQiZ + inf [u" Ryu The decision regions that have the same switching control
ieM,PEH N u€eRP

- constitute aswitching region For eachi € M, the switching
+ (Aiz + Biu)' P(Aiz + Bju)| } (19)  region Sy (i) is defined as:

For eachi € M and P € Hy, the quantity inside the Sn (i) = Upern Qn(Pyd). (21)
square bracket is quadratic in Thus, the optimal value N
of u can be easily computed as* = —K;(P)z, where The states that reside in the same switching region evolve

K;(P) is the Kalman gain defined in (17). Substituting through the same subsystem; however, they may be con-
into (19) and simplifying the resulting expression yieldgrolled by different feedback gains.



C. Relations to Other Controllers

Many hybrid-control laws proposed in the literature ([3],
[4], [11]) can be written in the following form:

£(2) = (i(2),0(2)) = (F(,y2,i(2))
i(z) = argmin 27 Q; 2,

ieM
where {F;},cm are the feedback gains and);}.,cm are
some symmetric matrices characterizing the decision nsgio
The control lawé(z) is exponentially stabilizing if F; }icu
and {Q;}:em satisfy certain matrix inequalities. However, 0]
these matrix inequalities are only sufficient conditions fo
the exponential stabilizability. There may not be a stalnitj
control law necessarily of the form (22) even when thét1]
switched linear system is exponentially stabilizable.

By a similar argument as in the last subsection, it can
be easily verified that (if divides the state space into at!1?]
most M conic decision regions; (ii) each switching controlj;3
is associated with only one feedback gain.

Compared withé, the control lawéy is more general.

o ) [14]
The number of decision regions g¢fy may be larger than
M and the same switching control may be paired with more
than one feedback gainst is interesting to realize that [°!
these small differences are enough to render the structiuire o
&n necessary for the exponential stabilization of a switchefls]
linear system

(6]

(7]

with (22) 8]

El

[17]
V. CONCLUSIONS [18]

This paper establishes a necessary and sufficient condi-
tion for the exponential stabilizability of switched limrea [19]
systems. We have proved that a switched linear systemis
exponentially stabilizable if and only if the there exists a
PQCLF and a stationary hybrid-control law that consist&°!
of a homogeneous switching-control law and a piecewisgy;
linear continuous-control law. This existence result hea
useful for the design of stabilizing controllers. It allows to
only consider the control-Lyapunov functions of piecewise|,
guadratic form and the continuous-control laws of piecewis
linear form in studying the exponential stabilization pesh
of a switched linear system. Future research will focus
on developing algorithms to efficiently compute a control-
Lyapunov function and the corresponding stabilizing cointr
law when the system is known to be exponentially stabiliz-
able.
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