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Abstract— Consider a set of sensors estimating the state of a
process in which only one of these sensors can operate at each
time-step due to constraints on the overall system. The problem
addressed here is to choose which sensor should operate at each
time-step to minimize a function of the error covariance of
the state estimation at each time-step. Previously, the authors
developed tractable algorithms to solve for the optimal and
suboptimal sensor schedule. The suboptimal algorithm trades
off the quality of the solution and the complexity of the problem
through a tuning parameter. As the tuning parameter is
increased the complexity of the problem significantly decreases
but the overall affect on the quality of the solution has not
been completely characterized as of yet. This work concentrates
on developing an upper bound on the distance from the
optimal solution through two different approaches. The first
approach exploits the peak estimation error, and the second
method decomposes the covariance into two factors to linearly
propagate the effects of perturbations. Numerical simulations
are also performed to demonstrate the performance of the
suboptimal algorithm for various tuning parameters.

I. INTRODUCTION

With the advances of sensor networks and the improve-
ment of unmanned systems for reconnaissance and surveil-
lance missions, the environment is being inundated with sen-
sor networks monitoring external processes. Some examples
are presented in [1], [2], [3], [4]. One paradigm for these
networks has each node perform some local processing of
the data and then transmit it to a central aggregation pro-
cess. Constraints on the network’s communication bandwidth
might not allow all of the nodes to communicate at each
time-step. Also, each node may only have a limited amount
of power and therefore should be turned off to conserve
power when its measurement is not required. In addition,
sensors may interfere with one another, as with sonar range-
finding sensors, and thus cannot operate at the same time.
Consequently, the objective is to manage the schedule of
nodes’ measurements. In this work, the problem of sensor
scheduling is to select one out of multiple available sensors
at each time-step to minimize the sum of all the estimation
errors over a certain time-horizon.

In a seminal work, Meier et al. [5] proposed a solution
to the discrete time scheduling problem through the use
of dynamic programming which enumerates all possible
sensor schedules; the combinatorial complexity makes this
method intractable for long schedule horizons. A local
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gradient method was also proposed which is more likely
to be computationally feasible, but only provides a sub-
optimal solution with no performance guarantees. In [6],
a relaxed dynamic programming procedure is applied to
obtain a suboptimal strategy that is bounded by a pre-
specified distance to optimality, but is only applicable for an
objective function that minimizes the final step estimation
error. Another approach [7] switched sensors randomly ac-
cording to a probability distribution to obtain the best upper
bound on the expected steady-state performance but without
any performance guarantees. The sensor scheduling problem
has also been formulated as a partially observable Markov
decision process [8], [9]. In [10], a condition was presented
that characterized when the initialization of a sensor schedule
is not optimal. Using this condition, three efficient algo-
rithms for finding the optimal and suboptimal solution were
developed. Although the algorithms significantly reduced
the computational complexity, there was no bound on the
distance from the optimal solution.

This work extends our previous contributions of [10] by
developing two different upper bounds on the performance
of the suboptimal solution. To develop the bounds, both
approaches utilize a novel decomposition of the objective
function and characterize the effect of small perturbations
in the initial covariance matrix of the Riccati mapping. The
first method uses the peak estimation error to develop the
bound, and although the exact peak estimation error is not
readily available, a conservative upper bound is obtained.
The second approach uses a factorization of the covariance
matrix that enables the combination of the process and
measurement updates into a linear transfer function. This
decomposition allows the effect of a small perturbation to
be exactly determined. To enable the efficient computation
of the numerical value of the bound an approximation is
proposed; simulations are performed to ensure the consis-
tency of this approximation. Finally, numerical simulations
are also conducted to demonstrate the typical performance
for various tuning parameters for the suboptimal algorithm.

The paper proceeds as follows. Section II describes the
standard sensor scheduling problem formulation. Then, sev-
eral properties of the objective function are explored and
a theorem which is useful for pruning branches in the
search tree is presented in Section III. In Section IV, a
brief description of two tractable algorithms for determining
the optimal and suboptimal solutions is provided, and two
bounds for the performance of the suboptimal algorithm are
developed in Section V. The paper concludes with directions
of future work.

II. PROBLEM FORMULATION

Consider the following linear stochastic system defined by,

x (k + 1) = Ax (k) + w (k) , ∀k ∈ TN , (1)



where x (k) ∈ Rn is the state of the system, w (k) ∈ Rn is
the process noise and TN = {0, . . . , N − 1} is the horizon.
The initial state, x(0), is assumed to be a zero mean Gaussian
distribution with covariance Σ0 i.e., x(0) ∼ N (0,Σ0). At
each time step, only one sensor is allowed to operate from
a set of M sensors. The measurement of the ith sensor is,

yi (k) = Cix (k) + vi (k) , ∀k ∈ TN , (2)
where yi(k) ∈ Rp and vi(k) ∈ Rp are the
measurement output and noise of the ith sensor at
time k, respectively. The process and measurement
noise have zero mean Gaussian distributions, w (k) ∼
N (0,Σw) , vi (k) ∼ N (0,Σvi) , ∀i ∈ M, where
M , {1, . . . ,M} is the set of M sensors. The process
noise, measurement noise and initial state are assumed to
be mutually independent. Let λ−w be the smallest eigenvalue
of Σw and assume that λ−w > 0. Denote by Mt the set of
all ordered sequences of sensor schedules of length t where
t ≤ N . An element σ = {σ0, σ1, . . . , σt−1} ∈Mt is called a
(t-horizon) sensor schedule. Under a given sensor schedule
σ, the measurement sequence is,

y(k) = yσk(k) = Cσkx(k) + vσk(k),∀k∈{0, . . . , t− 1}.

For each k ≤ t with t ≤ N and each σ ∈Mt, let Σ̂σk be the
predictor covariance matrix of the optimal estimate of x(k)
given the measurements {y(0), . . . , y(k−1)}. By a standard
result of linear estimation theory, the Kalman filter is the
minimum mean square error estimator, and the predictor
covariance of the system state estimate evolves according
to the Riccati recursion,

Σ̂σk+1 =AΣ̂σkA
T + Σw−

AΣ̂σkC
T
σk

(
CσkΣ̂σkC

T
σk

+Σvσk

)−1

CσkΣ̂σkA
T

(3)

with initial condition Σ̂σ0 = Σ0 and k ≤ t. Let R+ and Z+

be the set of nonnegative real numbers and integers, respec-
tively. Define J (σ) : Mt → R+ as the accrued estimation
error under schedule σ, i.e., J(σ) =

∑t
k=1 tr

(
Σ̂σk

)
. The

sensor scheduling problem is defined as solving the following
discrete optimization problem,

V = min
σ∈MN

J (σ) . (4)

III. PROPERTIES OF THE OBJECTIVE FUNCTION

Let A denote the positive semidefinite cone, which is the
set of all symmetric positive semidefinite matrices. A Riccati
Mapping ρi : A → A can be defined, which maps the
current covariance matrix, Σ̂k, under a new measurement
from sensor i ∈M to the next covariance matrix,

ρi(Σ̂k)=AΣ̂kA
T−

AΣ̂kC
T
i

(
CiΣ̂kC

T
i + Σvi

)−1

CiΣ̂kA
T + Σw.

(5)

A k-horizon Riccati mapping, φσk : A → A can similarly
be defined, which maps the covariance matrix at time 0, Σ0,
to the covariance matrix at time-step k, using the first k
elements of the sensor schedule σ,

φσk (Σ0) = ρσk−1
(. . . ρσ1

(ρσ0
(Σ0))) . (6)

Definition 1 (Characteristic Sets): Let {Hk}Nk=0 be de-
fined as the characteristic sets as they completely characterize
the objective function. Each set in the sequence has elements
of the form (Σ, γ)∈A×R+ and is generated recursively by:

Hk+1 = hM (Hk) from H0 = {(Σ0, tr (Σ0))} where

hM(H) = {(ρi(Σ), γ + tr(ρi(Σ))) : ∀i ∈M, ∀(Σ, γ) ∈ H} .
Let hM(·) be referred to as the characteristic set mapping.

The characteristic sets grow exponentially in size from the
singleton set {(Σ0, tr(Σ0))} to the set HN consisting of
up to MN pairs each comprising of a positive semidefinite
matrix and an accrued cost. These sets characterize the
covariance of the estimate and the objective cost at every
time-step under every possible sensor schedule.

Let Hk(i) = (Σk(i), γk(i)) be the ith element of the set
Hk, where Σk(i) and γk(i) are the covariance matrix and
objective cost, respectively. For any (Σ, γ) ∈ Hk, denote
by σ(Σ, γ) the corresponding sensor schedule. Also, for any
σ ∈ Mk, denote by (Σ̂σk , γ

σ
k ) the corresponding pair in Hk.

If H ⊂ Hk, then the set of schedules corresponding to H is
defined by,

M(H) = {σ ∈Mk : (Σ̂σk , γ
σ
k ) ∈ H}. (7)

The main idea of the proposed solution methods is moti-
vated by the following properties of the Riccati mapping.

Theorem 1 ([10]): For any i ∈M and any Σ1,Σ2 ∈ A,
(i) [Monotonicity] If Σ1 � Σ2, then ρi (Σ1) � ρi (Σ2);
(ii) [Concavity] ρi (cΣ1 + (1− c)Σ2) � cρi (Σ1) + (1 −
c)ρi (Σ2), ∀c ∈ [0, 1].

Thus, systems starting with a larger initial covariance, in
the positive semidefinite sense, will yield larger covariances
at all future time-steps. This result is important because it
provides insight on how to reduce the complexity of the
scheduling problem. Theorem 1 can be repeatedly applied
to result in the following corollary.

Corollary 1: Let σ ∈ MN and Σ1,Σ2 ∈ A, then ∀k ∈
[0, N ], ∀c ∈ [0, 1],
(i) If Σ1 � Σ2, then φσk (Σ1) � φσk (Σ2);
(ii) φσk (cΣ1 + (1− c)Σ2) � cφσk (Σ1) + (1− c)φσk (Σ2).

IV. SOLUTION METHODOLOGY

A. Algebraic Redundancy

To enable the solution of larger systems with longer
scheduling horizon, it is necessary to prune branches from
the search tree that will not lead to the optimal solution.

Definition 2 (Algebraic Redundancy): A pair (Σ, γ) ∈ H
is called algebraically redundant with respect toH\{(Σ, γ)},
if there exist nonnegative constants {αi}l−1

i=1 such that

l−1∑
i=1

αi = 1, and
[

Σ 0
0 γ

]
�

l−1∑
i=1

αi

[
Σ(i) 0

0 γ(i)

]
where l = |H| and {(Σ(i), γ(i))}l−1

i=1 is an enumeration of
H \ {(Σ, γ)}.

Using the results from Corollary 1 and Definition 2, the
following theorem provides a condition which characterizes



the branches that can be pruned without eliminating the
optimal solution of the sensor scheduling problem.

Theorem 2 ([10]): If the pair (Σ, γ) ∈ H is algebraically
redundant, then the branch and all of its descendants can be
pruned without eliminating the optimal solution.

In computing the characteristic sets, Definition 2 can be
applied to calculate a subset of Hk, ∀k ∈ {1, . . . , N}, which
is denoted as AlgoAR. Theorem 2 guarantees that this subset
still contains the optimal solution. This leads to an efficient
method for computing the optimal sensor schedule which is
outlined in Algorithm 1.

Algorithm 1 Sensor Scheduling for a Finite Horizon
1: H0 = {(Σ0, tr (Σ0))}
2: for k = 1,. . .,N do
3: Hk = AlgoAR (hM (Hk−1))
4: end for
5: σ∗ = arg min

j∈{1,...,|HN |}
γN (j)

Even though this method prunes a large number of
branches, the growth of the tree may still become prohibitive
for some problems. An approximate solution may be desired.
B. Numerical Redundancy

To further reduce the complexity, the algebraic redundancy
concept can be generalized to allow for numerical error.
Similar to Definition 2, the following definition provides a
condition for testing the ε-redundancy of a matrix.

Definition 3 (ε-Redundant): A pair (Σ, γ) ∈ H is called
ε-redundant with respect to H \ {(Σ, γ)}, if there exist
nonnegative constants {αi}l−1

i=1 such that
l−1∑
i=1

αi = 1,

[
Σ + εI 0

0 γ + ε

]
�

l−1∑
i=1

αi

[
Σ(i) 0

0 γ(i)

]
where l = |H| and {(Σ(i), γ(i))}l−1

i=1 is an enumeration of
H \ {(Σ, γ)}.

Denote by Algoε (H) the set of the remaining pairs after
removing all the ε-redundant pairs in H that satisfy the
conditions given in Definition 3. The following lemma can
be proved using Corollary 1 and Definition 3.

Lemma 1 ([10]): For any ε ∈ R+, (Σ, γ) ∈ Hk and
σ ∈ MN−k, there always exists another pair

(
Σ̂, γ̂

)
∈

Algoε (Hk) such that γ̂ +

N−k∑
s=1

tr(φσs (Σ̂)) ≤ γ + ε +

N−k∑
s=1

tr(φσs (Σ + εI)), for all k = 1, . . . , N .

To determine the ε-approximate solution of the sensor
scheduling problem, Algorithm 1 can be modified by substi-
tuting Algoε for AlgoAR. Define the ε-relaxed characteristic
sets {Hεk}

N
k=0 by

Hεk=Algoε(hM
(
Hεk−1

)
),with Hε0 ={(Σ0, tr (Σ0))} . (8)

The set HεN typically contains many fewer pairs than HN
and is much easier to compute. To simplify the computation,
the schedule that minimizes VN (σ) among all the schedules
in M (HεN ) can be used as an alternative to the optimal

schedule. While the suboptimal algorithm drastically reduces
the computational complexity, it might sacrifice the quality
of the solution too much. Consequently, an upper bound on
the distance from the optimal solution is needed.

V. PERFORMANCE ANALYSIS

To aid the discussion, the relaxed value function V εk is
introduced and defined as,

V εk = min
σ∈M(Hεk)

Jk (σ) = min
(Σ,γ)∈Hεk

γ. (9)

The goal of this section is to derive an upper bound for the
error, V εN − VN , incurred by the relaxation in Eqn. (8). For
each j = 1, . . . , N , let {Hεk}

N
k=0 be generated by

Hε,jk =

 Algoε(hM

(
Hε,jk−1

)
) ∀k < j

hM

(
Hε,jk−1

)
∀k ≥ j

(10)

with Hε,j0 = {(Σ0, tr (Σ0))}. The set Hε,jk evolves (as a
function of k) according to the ε-relaxed iteration for the
first j steps and then evolves according to the non-relaxed
iteration for the remaining steps. When j = 0, define
Hε,0k = Hεk for k = 0, . . . , N . For any j = 1, . . . , N , Hε,jk
coincides with Hεk for all k < j, and the set Hε,jN decreases
monotonically to HεN as j ↑ N . Let σε,j be the “optimal”
schedule within M(Hε,jN ) defined by

σε,j = arg min
σ∈M(Hε,jN )

JN (σ), for j = 0, . . . , N. (11)

It should be noted that σε,0 coincides with the optimal sensor
schedule within MN and σε,N is the best sensor schedule
among the set M(HεN ). For each j = 1, . . . , N − 1, the
performance of the schedule σε,j is sandwiched between the
solutions corresponding to σε,0 and σε,N . For each j, k =
0, . . . , N , define

V ε,jk = min
σ∈M(Hε,jk )

Jk (σ) = min
(Σ,γ)∈Hε,jk

γ. (12)

Thus the total error can be decomposed by,

V εN − VN =

N∑
j=1

(
V ε,jN − V ε,j−1

N

)
. (13)

Note that due to the monotonicity of V ε,jN , each term in the
summation is nonnegative.

To develop an analytical expression for the bound of the
error V εN − VN , the effect of a perturbation of the initial
covariance on all future covariances must be determined.
Suppose this effect of the perturbation can be quantified
through the matrix-valued error function Θσ

k (ε, φσk (Σ)) such
that φσk (Σ + εI) � φσk (Σ) + Θσ

k (ε, φσk (Σ)) then the
total error incurred can be obtained in the following theorem.

Theorem 3: For any N ∈ Z+, the error is bounded by

V εN − VN ≤
N∑
j=1

(
ε+

N−j∑
k=1

tr
(

Θσε,j

k+j−1

(
ε, φσ

ε,j

k+j−1 (Σ0)
)))

.

Proof: From Eqn. (13), it suffices to bound
V ε,jN − V ε,j−1

N for all j = 1, . . . , N . Recall that
Hε,jk = Hε,j−1

k for all k ≤ j − 1 and that
Hε,jk = Algoε

(
Hε,j−1
k

)
. Using the definition of φσk (Σ)

in Eqn. (6),



V ε,jN = min
(Σ,γ)∈Algoε(Hε,j−1

k )
σ∈MN−j

γ +

N−j∑
k=1

tr (φσk (Σ)) .

From Lemma 1,

V ε,jN ≤ min
(Σ,γ)∈Hε,j−1

j

σ∈MN−j

γ + ε+

N−j∑
k=1

tr (φσk (Σ + εI)) .

If the term, φσk (Σ + εI), can be upper bounded such that
φσk (Σ + εI) � φσk (Σ) + Θσ

k (ε, φσk (Σ)) then,

V ε,jN ≤ min
(Σ,γ)∈Hε,j−1

j

σ∈MN−j

γ + ε+
∑N−j
k=1 [tr (φσk (Σ)) +

tr (Θσ
k (ε, φσk (Σ)))]

≤ V ε,j−1
N + ε+

N∑
k=j+1

tr
(

Θσε,j

k

(
ε, φσ

ε,j

k (Σ0)
))

.

The desired result then follows from Eqn. (13) by summing
over all j = 1, . . . , N .

According to the previous theorem, once the error function
Θσ
k is obtained, the total error can easily be determined. In

the following sections, two different approaches are explored
to bound Θσ

k which leads to two different total error bounds.

A. Error Bound Through the Peak Estimation Error

1) Perturbation: An upper bound for the perturbed Ric-
cati mapping is first derived. Let for each i ∈M and Σ ∈ A,

Āi(Σ) , A−AKi(Σ)Ci, (14)

where Ki(Σ) is the Kalman gain defined as,

Ki(Σ) = ΣCT
i (CiΣC

T
i + Σvi)

−1.

Lemma 2: For each i ∈M and any Σ, Q ∈ A,

dρi(Σ + εQ)

dε

∣∣∣∣
ε=0

= Āi(Σ)QĀi(Σ)T,

where Āi(Σ) is defined in (14).
Proof: Let i ∈ M, Σ ∈ A and Q ∈ A be arbitrary but

fixed. Define f(ε) = Ci(Σ + εQ)CT
i + Σvi . It can be easily

shown that,
df−1(ε)

dε
= −f−1(ε)CiQC

T
i f
−1(ε).

Taking the derivative of ρi(Σ + εQ) with respect to ε and
letting ε = 0 yields

dρi(Σ + εQ)

dε

∣∣∣∣
ε=0

=

A
[
(I − ΣCT

i f
−1(0)Ci)Q(I − CT

i f
−1(0)CiΣ)

]
AT.

Noting that f−1(0) =
(
CiΣC

T
i + Σvi

)−1
and by the defini-

tion of Āi(Σ), the desired result is obtained.
By the concavity of the Riccati mapping (Theorem 1), it

can be easily verified that the mapping µi,Σ,Q : R+ → A
defined by µi,Σ,Q(ε) = ρi(Σ+εQ), ∀ε ∈ R+ is also concave
for any i ∈ M, Σ ∈ A and Q ∈ A. Thus µi,Σ,Q(ε)

can be upper bounded by an affine function of ε, namely,
µi,Σ,Q(0) + µ′i,Σ,Q(0)ε, which implies,

ρi(Σ + εQ) � ρi(Σ) +
(
Āi(Σ)QĀi(Σ)T

)
ε,

∀ε ∈ R+, i ∈M and Σ, Q ∈ A. (15)

Suppose that at some generic time k, the covariance matrix
is perturbed from Σ to Σ + εI . An upper bound for the k-
step effect of this perturbation, φσk(Σ + ε I) − φσk(Σ), is
desired.

Lemma 3: For each k = 1, . . . , N and any Σ ∈ A,

gσk (Σ) ,
dφσk(Σ + εI)

dε

∣∣∣∣
ε=0

=

0∏
t=k−1

(
Āσ(t)(φ

σ
t (Σ))

) k−1∏
t=0

(
Āσ(t)(φ

σ
t (Σ))

)T
.

Proof: For simplicity, let Ât = Āσ(t)(φ
σ
t (Σ)). The case

k = 1 follows from Lemma 2. Suppose that the result holds
for a general k ≤ N − 1,

φσk(Σ + εI) = φσk(Σ) +

[
0∏

t=k−1

Ât

k−1∏
t=0

ÂT
t

]
ε+ o(ε),

where o(ε) satisfies o(ε)/ε→ 0 as ε→ 0. Now, it has to be
shown that it is also true for k + 1. Notice that,

φσk+1(Σ + εI) = ρσ(k)(φ
σ
k(Σ + εI))

= ρσ(k)

(
φσk(Σ)+

[
0∏

t=k−1

Ât

k−1∏
t=0

ÂT
t

]
ε+o(ε)

)
.

Applying Lemma 2 to the right-hand side will yield the
desired result.

Similar to Eqn. (15), an affine upper bound for φσk(Σ+εI)
can be obtained using Lemma 3.

Proposition 1: For any Σ ∈ A, ε ∈ R+ and k = 0, . . . , N ,
the k-step effect of a perturbation, Σ + εI , can be upper
bounded by φσk(Σ + εI) � φσk(Σ) + gσk (Σ)ε.

The function gσk (Σ) quantifies how a perturbation error in-
curred at some generic time t will affect the error covariance
matrix at k iterations later provided that no further perturba-
tion is applied after step t. By utilizing this function, an upper
bound on the overall error incurred through the numerical
redundancy pruning algorithm can now be determined.

2) Error Bound: For each j = 1, . . . , N , to quantify the
error V ε,jN − V ε,j−1

N , an arbitrary N -horizon schedule σ ∈
MN is decomposed into a j-horizon schedule σ′ and an (N−
j)-horizon schedule σ′′, i.e., σ = {σ′, σ′′}. Also, let Gσj be
defined as,

Gσj ,
N−j∑
k=1

gσ
′′

k (φσ
′

j (Σ0)). (16)

It will become clear later that to obtain the desired bound,
it suffices to bound Gσj along the “optimal” schedule within
M(Hε,jN ). For each σ ∈MN , define the peak estimation error
by Eσ , max

k=1,...,N
tr(φσk(Σ0)). Define the peak estimation

error over all schedules {σε,j}Nj=0 as,

β = max
j=0,...,N

Eσ
ε,j

. (17)



Using the peak estimation error β an upper bound for Gσ
ε,j

j

can be derived.
Lemma 4: Let β be the constant given in Eqn. (17). Then

for each j = 0, . . . , N , the term Gσ
ε,j

j can be upper bounded
by,

Gσ
ε,j

j ≤ nβη

λ−w(1− η)
,

where σε,j is defined in (11) and

α =
λ−w

‖A‖2β2 + λ−wβ
, η =

1

1 + αλ−w
.

Proof: See [11].
Theorem 4: Let β, α and η be given as in Lemma 4. For

any N ∈ Z+,
1

N
(V εN − VN ) ≤

(
nβη

λ−w(1− η)
+ 1

)
ε.

Proof: From Theorem 3,

V ε,jN ≤ min
(Σ,γ)∈Hε,j−1

j

σ∈MN−j

γ + ε+
∑N−j
k=1 [tr(φσk(Σ))

+tr(gσk (Σ))ε]

≤ V ε,j−1
N + ε+Gσ

ε,j

j ε,

where Gσ
ε,j

j and σε,j are defined in Eqn. (16) and Eqn. (11),
respectively. The desired result follows from Lemma 4.

Remark 1: The error bound derived above depends on the
quantity β. If (A,Ci) is detectable for some i ∈ M, then it
can be easily shown that β is bounded from above by βiN ,
where βi denotes the peak estimation error corresponding to
the schedule σ = {i, . . . , i}, i.e., βi = Eσ .

Let C be defined as C = [CT
1 , . . . , C

T
M ]T and let Σv be

defined as Σv = diag (Σv1 , . . . ,ΣvM ) where diag places
the elements along the diagonal. The covariance matrix Σ̂all

k

is obtained by using all the sensors at each time-step and
evolves according to,

Σ̂all
k+1 = AΣ̂all

k A
T−AΣ̂all

k C
T
(
CΣ̂all

k C
T+Σv

)−1

CΣ̂all
k A

T+Σw

with Σ̂all
0 = Σ0. It can be easily verified that

tr(Σ̂all
k ) ≤ tr(Σ̂σk) ∀σ ∈MN and ∀k ∈ [0, . . . , N ].

Proposition 2: Using the previous insights, the quantity β
can be upper bounded by, β ≤ J(σε,N ) −

∑N−1
k=0 tr

(
Σ̂all
k

)
.

Figure 1 shows the bound for log
(
Gσj
)

for randomly
generated systems with n = 4 states, M = 3 sensors and a
time-horizon of N = 14. In generating the random systems,
each pair (A,Ci), ∀i ∈M, was restricted to be unobservable
to coerce the optimal solution to switch between sensors,
while if all the sensors are used at once then the system is
fully observable. The function ε (exp(G) + 1)N transforms
any value G, from the plot, to the upper bound for the per-
formance of the suboptimal algorithm. The actual maximum
realized error percentage was 0.5% and consequently the
bound is very conservative in predicting the performance of
the suboptimal algorithm.
B. Error Bound Through Linear Covariance Factors

It has been shown that the estimator error covariance can
be factored such that it can be propagated linearly [12].
Similarly, if A is invertible, then the predictor covariance
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Fig. 1. A plot of the bound of the logarithm of Gσj .

can also be linearly factored via, Σ̂k = EkF
−1
k where

E0 = Σ0 and F0 = I . This factorization allows the predictor
covariance factors to evolve via the following linear system,

Ψk =

[
Ek
Fk

]
= ξ (i)

[
Ek−1

Fk−1

]
for each i ∈M and where ξ (i) is defined as,

ξ (i) =

[
ΣwA

TCT
i Σ−1

vi Ci +A ΣwA
−T

A−TCT
i Σ−1

vi Ci A−T

]
.

1) Perturbations: Let Ψp
k be the perturbed covariance

factors at time-step k, and let ξ̄k be the transfer function
for the covariance factors at time-step k starting from the
initial time-step. The transfer function ξ̄σk is defined as,
ξ̄σk = ξ(σk−1) . . . ξ(σ1)ξ(σ0). Assume that the covariance
matrix is perturbed at a single time-step, i.e. Σ + εI , then
the perturbed linear covariance factors can be calculated by

Ψp
k = ξ̄σk

[
Σ + εI
I

]
= ξ̄σk

([
Σ
I

]
+

[
εI
0

])
(18)

which can be decomposed into, Ψp
k = Ψnp

k + Ψε
k where

Ψnp
k = ξ̄σk

[
Σ
I

]
= ξ̄σkΨnp

0 and Ψε
k= ξ̄σk

[
εI
0

]
= ξ̄σkΨε

0.

The terms Ψnp
k and Ψε

k are the unperturbed and perturbation
covariance factors at time-step k, respectively. Also, the
terms Σnpk = Enpk Fnpk

−1 and Σεk = EεkF
ε
k
−1 are the unper-

turbed and perturbation covariance matrices, respectively, if
the inverses exist. Consequently, the original and perturbation
factors can be propagated independently to determine the
effect. The perturbed covariance matrix at time-step k is
calculated through,

Σ̂pk = Enpk (Fnpk + F εk)
−1

+ Eεk (Fnpk + F εk)
−1
.

Using the matrix inversion lemma for the term
(Fnpk + F εk)

−1 yields,

Σ̂pk = Σ̂npk + ∆ε,σ
k , (19)

where

∆ε,σ
k = Σ̂εk−EεkF εk

−1
(
Fnpk

−1
+F εk

−1
)−1

F εk
−1

−Enpk Fnpk
−1
(
Fnpk

−1
+F εk

−1
)−1

Fnpk
−1
.

(20)

The only constraint on the linear covariance factors is that
Enp0 Fnp0

−1
= Σ0. Consequently, there is some freedom in

choosing the initial covariance factors, Enp0 and Fnp0 , which
can be used to our advantage to simplify the ∆ε,σ

k term. If the
initial unperturbed covariance factors can be chosen such that
Enpk = Σ̂npk and Fnpk = I then it will simplify the expression
for ∆ε,σ

k . The initial covariance factors can be calculated



by solving the following linear system, ξ̄σk

[
Enp0

Fnp0

]
=[

Σ̂npk
I

]
with the constraint that Enp0 Fnp0

−1
= Σ0. There is

also a dependence on the perturbed/perturbation covariance
factors and the unperturbed covariance factors. Therefore the
initial perturbation covariance factors must be determined
from the unperturbed initial covariance factors but again
there is some freedom in choosing them as well. One
such possibility is: Eε0 = εFnp0 , F ε0 = 0 and another
is: Eε0 =

(
Σ + εI − Enp0 (Fnp0 + I)

−1
)

(Fnp0 + I), F ε0 =

I . Substituting the previous simplifications into Eqn. (20)
yields,

∆ε,σ
k =

(
Σ̂εk − Σ̂npk

)(
I + F εk

−1
)−1

. (21)

Even though the perturbation term cannot be readily com-
puted because the term Σ̂npk is not known, trends can still be
inferred about the overall effect of the suboptimal algorithm.

2) Error Bound: Using the results from the previous
section, an upper bound on the performance of the numerical
redundancy algorithm can be established.

Lemma 5: Let σε,j be decomposed into a j-horizon
schedule σj

′ and an (N − j)-horizon schedule σj
′′, i.e.

σε,j = {σj ′, σj ′′} For any N ∈ Z+, the error is bounded
by,

V εN − VN ≤
N∑
j=1

(
ε+

N−j∑
k=1

tr
(

∆ε,σj
′′

k

))
.

Proof: From Theorem 3,

V ε,jN ≤ V ε,j−1
N + ε+

N−j∑
k=1

tr
(

Θσj
′′

k

(
ε, φσ

ε,j

k+j (Σ0)
))

.

From Eqn. (19), the error function Θσj
′′

k

(
ε, φσ

ε,j

k+j (Σ0)
)

is

equal to ∆ε,σj
′′

k . Therefore,

V ε,jN ≤ V ε,j−1
N + ε+

N−j∑
k=1

tr
(

∆ε,σj
′′

k

)
.

One thing to note about the bound is that ∆ε,σ
k is proportional

to Σεk − Σnpk which means that under most circumstances a
small perturbation only has an affect during the first few
time-steps. This is due to the fact that Σεk → Σnpk because
Σnpk should converge to a (cyclic) steady-state covariance if
the system can be fully observed through switching between
sensors.

The bound cannot be directly computed using the results
from the algorithm since it requires knowing σε,j for all j;
thus, the optimal sensor schedule needs to be computed since
it is by definition σε,0. Fortunately, a good approximation can
be obtained by using σε,j = σε,N for all j which is the sensor
schedule returned from the numerical redundancy pruning
algorithm. Under this approximation the exact representation
of ∆ε,σ

k in Eqn. (19) can be used to calculate the bound.
Through this approximation, it is no longer guaranteed to
be a valid upper bound but simulations were performed in
which the optimal sensor schedule could be computed and
the approximate bound was consistent in all cases.

Figure 2(a) shows a comparison of the approximate bound
for the same set of randomly generated systems as shown
before in Figure 1 for the peak estimation error bound except
that it is plotted as the percentage of the total cost. The
approximate bound is much less conservative in predicting
the performance of the suboptimal solution. Figure 2(b)
shows a comparison of the approximate bound for randomly
generated systems with a time-horizon of N = 50. The
approximate bound for the longer time-horizon exhibits the
same trends as with the shorter time-horizon.
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Fig. 2. Two comparisons of the estimated bound for ε = [0.1, 0.5, 1.0]
which are colored red, green and blue respectively. The estimated bound is
plotted as the percentage of the total cost.

VI. CONCLUSIONS
One area of future work that the authors wish to explore

is in analyzing periodic schedules. It has been previously
noticed that the sensor schedules tend to be periodic for
the non-transient portion of the schedule. The authors would
like to analyze this behavior to determine conditions for the
periodicity and a bound for the objective function if the
periodic schedule were used.
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