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R
obotics has provided the motivation and inspi-
ration for many innovations in planning and
control. From nonholonomic motion planning
[1] to probabilistic road maps [2], from cap-
ture basins [3] to preimages [4] of obstacles to

avoid, and from geometric nonlinear control [5], [6] to
machine-learning methods in robotic control [7], there

is a wide range of planning and control algorithms and
methodologies that can be traced back to a perceived
need or anticipated benefit in autonomous or semiauton-
omous systems.

Our research has also been inspired by problems in
autonomous and semiautonomous systems. We have fo-
cused on safety verification and controller synthesis to
satisfy safety specifications as well as verification and con-
troller synthesis for guaranteeing that desired targets are
reached. Among a group of researchers at the interface of
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robotics, control, and computer-aided verification, we have
been particularly interested in safety-critical systems in
which automation, or a combination of automation and
human control, is responsible for keeping the system state
inside a region of the state space defined to be safe, as well
as inside a region that is guaranteed to reach the desired tar-

get. For example, a tactical
collision-avoidance system
for manned aircraft and
unmanned aerial vehicles
(UAVs) in a Next Genera-
tion air traffic control sys-
tem must ensure that all
pairs of aircraft remain sep-
arated by a specified safety
distance, under reasonable
assumptions on the relative
aircraft configurations and
individual aircraft actions.
At a lower level, an aircraft

autopilot must guarantee that the aircraft state remains
within the aerodynamic flight envelope of the aircraft,
despite changes in set points and commands from higher
level controllers. Steps have been made toward solving
these problems by determining how to compute the so-
called reachable sets for dynamic systems, which are sets
of initial states from which the system is guaranteed to
remain inside a safe region while eventually reaching a
desired target [8]–[10]. In addition, computational advances
have been made in finding efficient methods for computing
such reachable sets [11]–[17].

The distinguishing examples described earlier, and many
others considered in robotics and autonomous systems, are
hybrid. Hybrid systems are characterized by continuous
systems with a mode-based operation, where the different
modes correspond to different continuous dynamics (typi-
cally described by ordinary differential equations) governing
the system evolution [18], [19]. These differences could be
caused by different control regimes, such as in regular flight
or collision-avoidance modes, physical changes in the sys-
tem dynamics based on interaction with the environment,
such as locomotion or other aerial/ground robotic interac-
tions, or by a simplification of the control design that lumps
together like behaviors of a continuous system into modes.

In this article, we review the methodology that we have
developed for computing reachable sets for hybrid systems
and the corresponding methods for computing controllers
that guarantee safety and target capture. We present this
methodology in the context of three autonomous/semiau-
tonomous system examples: aerobatic maneuver design for
an autonomous quadrotor aerial vehicle, controller design
for quadrotor motion planning under uncertainty, and a
game of capture the flag in which reachability is used as a
tool to aid human controllers.

While this work is motivated by the need to verify the
behavior of safety-critical dynamical systems and design

control laws for such systems with verified behavior, it is
necessary to state some caveats. Safety or performance veri-
fication of dynamic systems may be roughly classified into
two groups: exact verification on very simple models or
approximate verification on more complex models. The
methods presented in this article fall into the second group:
the computational methods we employ are convergent nu-
merical methods, thus approximate, yet they may be applied
to hybrid systems with continuous dynamics represented by
nonlinear ordinary differential equations with both control
and disturbance inputs. These computational methods are
grid based, and although the computation in each discrete
state may be performed in parallel, the computational com-
plexity of these methods scales exponentially in the dimen-
sion of the continuous state. On today’s standard laptop
computers, we are typically limited to continuous state
dimensions of five or less. Nonetheless, a fast computation
on a coarse grid allows us to rapidly rule out large parts of
the state space as safe and to focus our finer computations
on interesting regions closer to the boundary of the unsafe
regions. Although none of the system verification methods
designed today eliminates the need for detailed testing since
the models are always an approximation of the actual
dynamics, we believe that the methods presented here have
the potential to reduce testing and to direct the test engineer
to more useful and informative tests.

Hybrid Systems Model
The last decade has witnessed an increased research inter-
est in building complex robotic systems by properly com-
bining multiple simple control laws designed for different
subtasks or operating scenarios. Such examples include
reactive control for motion planning [20], locomotion
control of bipedal robots [21], switching control of UAVs
[10], [22], cooperative control of multirobot systems [23],
[24], and coverage control with unicycle robots [25].
Although breaking down the overall control task into
several simpler ones can simplify the design process, the
interaction between the physical dynamics and the rules
of the discrete switching logic may result in unexpected
system behaviors or even catastrophic failures, making
the analysis and safety verification of the overall system
significantly more challenging. Hence, to guarantee safety
and meet the specific performance requirements, these
couplings should be properly incorporated into the
mathematical representation of the system, necessitating
the use of a hybrid system model.

To simplify the discussion, this article adopts a slight
specialization of the hybrid system models presented in
[9]. As illustrated in Figure 1, the state of a hybrid system
is described by a combination of a continuous state
variable x, taking values in the n-dimensional Euclidean
space Rn, and a discrete state variable q, taking values in a
finite (or countable) set Q that represents the different
operating modes of the system. The inputs to the system
consist of a finite collection of discrete control inputs R, a
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set of continuous control inputs U , and a set of continuous
disturbance inputs D.

In each mode i 2 Q, the continuous state evolves ac-
cording to an ordinary differential equation model

_x(t) ¼ fi(x(t), u(t), d(t)), (1)

where u and d are the continuous control and disturbance
inputs, respectively. The evolution of the discrete state is
described by a transition function F : Q 3 X 3 R! Q,
which can be viewed as a slight generalization of the state
transition function used in formal descriptions of finite
automata and discrete event systems (see [26]). As an
example, the transition logic for Mode 1 in Figure 1 is
described by F(1, x, r) ¼ 2 when either x 2 E12 or r ¼ 2,
and Fð1; x; rÞ ¼ 1 otherwise.

Under this model, an execution of the hybrid sys-
tem proceeds roughly as follows. From an initial state
ði; x0Þ 2 Q 3 X, the continuous state evolves according to
(1), while the discrete state remains constant until the first
time t1 when the function F evaluates to a discrete state
j 6¼ i. This triggers a discrete jump from i to j while the
continuous state remains constant. The continuous state
then evolves according to the dynamics in mode j, and the
whole process is repeated. A simple example of a hybrid
trajectory is given in Figure 1, where the mode transitions
at time instants t1 and t4 are autonomous jumps due to the
continuous state x hitting the guard conditions E12 and
E21, while the ones at t2 and t3 are controlled transitions
triggered by changes in the discrete command r.

The rest of the article focuses on controller design and
synthesis methods for the class of hybrid systems described
here. More specifically, the goal is to find control policies
for the continuous and discrete inputs that drive the hybrid
state into a designated region at the end of the control hori-
zon without hitting some known unsafe sets during the
process. Such a design goal is difficult to achieve for hybrid
systems because of the entanglement between their discrete
and continuous dynamics. In the following section, a
reachability-based approach will be introduced to tackle
this challenging problem.

Reachability

Background
Reachability analysis for hybrid systems has been a prolific
area of research over the past two decades. Existing meth-
ods in this field can be broadly classified according to the
assumptions on the continuous time dynamics (clocks
[27], linear [12], [28], and nonlinear [9], [14]) and the
types of set computation (discrete abstraction [19], [29],
polytopes [17], ellipsoids [13], and numerical discretiza-
tion [30], [31]).

In this article, the methods for controller design and
synthesis are based upon the Hamilton–Jacobi approach to
reachability analysis as described in [9] and [31], with the

advantages of being able to handle nonlinear system
dynamics and bounded time-varying disturbances. The
effectiveness of this approach has been demonstrated in
applications such as design of aerobatic maneuvers [32],
synthesis of robust motion control strategies [10], and
planning in adversarial scenarios [33].

Continuous-Time Hamilton–Jacobi Reachability
Before going into the specifics of the controller design and
synthesis methods, some basic definitions of continuous-
time reachable sets will be introduced along with a brief
review of how these sets can be computed using the
method of Hamilton–Jacobi reachability. In this prelimi-
nary discussion, the system dynamics are assumed to be
_xðtÞ ¼ f ðxðtÞ; uðtÞ; dðtÞÞ, xð0Þ ¼ x0, evolving in Rn sub-
ject to uðtÞ 2 U , dðtÞ 2 D.

First, consider a safety verification problem where some
unsafe terminal set A � Rn to be avoided is specified,
along with a set of permissible initial conditions X0; the
task is to prove that X0 does not contain any state from
which the system trajectory terminates inside A within
some time s. This involves computing the set of states for
which regardless of the input u, there exists some choice of
disturbance d such that xðsÞ 2 A. This will be referred to
as the avoid set over time s denoted byAðA; sÞ.

One possible way of computing this set is via optimal
control. As a first step, a continuous function l : Rn ! R is
constructed such that lðxÞ � 0 if and only if x 2 A, where l
is commonly referred to as a level set function. Now, con-
sider a terminal cost problem where the control seeks to
maximize lðxðsÞÞ while the disturbance tries to minimize
the same. The value function at the initial time is then given
by Jðx; 0Þ ¼ maxuð�Þmindð�ÞlðxðsÞÞ, where the maximization
and minimization are taken over realizations of the input
and disturbance over the interval ½0; s�. Here, the input u is
allowed to be selected according to a state feedback strategy.
Clearly, AðA; sÞ is the set of states x such that Jðx; 0Þ � 0
(see Figure 2). Moreover, it has been shown [34] that J is the

x ∈ E21 or σ = 1

x ∈ E12 or σ = 2

Mode q = 1 Mode q = 2

Guard-Triggered Transition

Controlled
Transition

x (t )

x 0

t 1 t 2 t 3 t 4 t

q = 1 q = 1 q = 1q = 2q = 2

x = f1(x, u, d )
⋅ x = f2(x, u, d )

⋅

Figure 1. An example of a hybrid system model and its
trajectory.

SEPTEMBER 2011 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 35



unique viscosity solution of the Hamilton–Jacobi–Isaacs
(HJI) partial differential equation (PDE)

@J
@t
þ H

�
x,
@J
@x

�
¼ 0, J(x, s) ¼ l(x), (2)

where the Hamiltonian is defined as

H(x, p) ¼ max
u2U

min
d2D

pT f (x, u, d): (3)

Moreover, as discussed in [9], the corresponding optimal
control input for avoiding the terminal set A can be syn-
thesized according to

u�(x, t) 2 arg max
u2D

min
d2D

p(x, �t)T f (x, u, d), t 2 ½0, T�, (4)

where p ¼ @/=@x. In cases where one is interested in com-
puting the avoid set with respect to a particular choice of
input, for example, according to some feedback policy
uðtÞ¼KðxðtÞÞ, then the Hamiltonian reduces to H x;pð Þ¼
mind2DpT f ðx;KðxÞ;dÞ.

Numerical solutions to (2) on a grid can be calculated
using the Level Set Toolbox [35]. It should be noted that the
computational complexity of the algorithm underlying the
Level Set Toolbox depends on both the dimension of the
state space as well as the computational cost of performing
the static optimization inside the Hamiltonian. For example,
in many of the applications we describe in the “Applications”
section, the inputs u and disturbances d enter in an affine
manner, so the optimization in the Hamiltonian can be per-
formed in constant time for each node in the grid on which
the equation is being solved. Unfortunately, the number of
nodes in the grid (and thus the accuracy of the resulting
solution) scales exponentially with the number of dimen-
sions in the state space, which in practice restricts this sort
of reachability analysis to systems of dimension five or less,
primarily due to the limitations on the amount of memory
available on current computers. New developments may
help to alleviate this issue, however, including recent work

on a mixed implicit explicit formulation that takes advant-
age of the fact that for many physical systems several of the
state dimensions are simple integrators [36].

It turns out that slight modifications of (2) can be used
to solve a number of verification problems. For example,
the computational procedure just described can be gener-
alized [31] to the case where the safety specification is to
avoid A over the entire time interval ½0; s�. Another exam-
ple is the computation of the capture set, which is defined
as the set of states that can be driven into a target set R over
some fixed time horizon. Using a level set representation
of R, the reachability problem can again be posed as a
terminal cost problem where the value function is given by
Jðx; 0Þ ¼ minuð�Þmaxdð�ÞlðxðsÞÞ. The corresponding set will
be denoted by RðR; sÞ. Finally, under a combination of
safety and target attainability objectives, the set of states
that can be driven inside R while avoiding A can be com-
puted using a constrained HJI PDE [37]. This set will be
referred to as the reach–avoid set, denoted byRAðR;A; sÞ.
It is worth noting that, under a particular choice of feedback
control, the reach–avoid set computation simplifies to a set
difference between capture and avoid sets. Specifically,
under a particular choice of feedback law for u, we have
RAðR;A; sÞ ¼ RðR; sÞnAðA; sÞ, which can be computed
via a pointwise maximization of value functions derived
from the capture and avoid set calculations.

Hybrid System Reachability and Control
Given the large number of design parameters in the model
described in the “Hybrid Systems Model” section, one of the
first difficulties that can be observed with the control of hybrid
systems lies in the problem formulation itself. For example,
consider a system consisting of a finite sequence of modes,
where the switches between successive modes are completely
controlled. In this case, hybrid control involves choosing
either the switching times [38] or the switching surfaces [39].
The problem becomes immediately more difficult when the
mode sequence is not known ahead of time in which case the
mode sequence needs to be selected in addition to the above
design parameters [40]. In the case where there are both con-
trolled and autonomous discrete transitions, the various theo-
retical and computational issues underlying the control of a
hybrid system become even more involved [18].

However, given the description in the “Hybrid Systems
Model” section as well as the example illustrated in Figure
1, an observation that can be made is that every execution
of a hybrid system considered in this article follows a par-
ticular structure. Namely, the execution is continuous on a
sequence of intervals ½t0; t1Þ, ðt1; t2Þ, . . . , ðtk�1; tk�, and the
discrete jumps take place at the switching times t1, t2, . . . ,
tk�1. It turns out that this type of execution also holds for
much more general classes of hybrid systems as considered
in [41] and [18]. This motivates the following problem for-
mulation: design a controller so that the system trajectory
is guaranteed to terminate inside a target set RH � Q 3 Rn

while avoiding an unsafe set AH � Q 3 Rn, under the class

A

J (x, t) J (x, 0)

A (A, t)

Figure 2. The zero sublevel set of an appropriate cost function
is used to define capture or unsafe regions in the state space.
Solving the modified Hamilton–Jacobi PDE backward in time
gives the reachable sets.
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of executions just described, with the timing specifications
t1 � t0 � s1, . . . , tk � tk�1 � sk, where s1, . . . , sk are
given. It is important to note that the parameter si is only
an upper bound on the time between the ith and the
(iþ 1)th mode switch. As such, we allow for executions
where the duration of ðti; tiþ1Þ is strictly less than si.

The approach taken in this article, based on the ideas
described in [9] and [41], is to construct a controller with verifi-
able safety and attainability properties from a formal reachabil-
ity analysis. For the purpose of the application scenarios that
will be presented in the “Applications” section, we describe a
reachability and controller synthesis algorithm for hybrid sys-
tems where the discrete transitions are not forced. Specifically,
it is assumed that for each q 2 Q and x 2 X, there exists a
discrete control input r 2 R such that Fðq; x; rÞ ¼ q. The
implication is that if a transition to another mode is enabled by
changes in the continuous state, the controller can still choose
to remain in the same mode. When this assumption does not
hold, the computational procedures become more involved.
The interested reader is referred to [9] for further details.

Now, consider the case of one discrete switch (k ¼ 2). On
the time interval ðt1; t2�, continuous-time reachability can be
used to compute the set of states that can be driven inside
the target set in each mode i while avoiding the unsafe set,
regardless of the choice of disturbances. These sets are
denoted byRAiðRi, Ai, s2Þ, where Ri, Ai are the components
of the target and unsafe sets in mode i. They are shown in
Figure 3 for a simple two-mode system. We denote the col-
lection of continuous-time reach–avoid sets computed on
ðt1, t2� byRAHðRH, AH, s2Þ ¼

S
i2Q if g3RAiðRi;Ai; s2Þ.

To account for the discrete switch at time t1, it is necessary
to introduce the preimage operator PreðSÞ, taking as input a
subset S of the hybrid state space and producing as output the
set of hybrid states that can switch into S under the transition
function F in the “Hybrid Systems Model” section, either due
to changes in the continuous state or under some choice of
discrete command r. The hybrid reach–avoid set on ½t1; t2� is
then given by Pre RAHðRH;AH; s2Þ

� �
. For example, in the

controlled switches shown in Figure 3, the preimage of the set
RAHðRH;AH; s2Þ is the union of the sets RA1ðR1;A1; s2Þ
and RA2ðR2;A2; s2Þ for modes 1 and 2. More generally, the
set of feasible initial conditions (or a subset thereof) for the
hybrid control problem can be computed using Algorithm 1.

Several remarks are in order. First, at each step of the
algorithm, the reach–avoid set update Sjþ1 can be
chosen either as equal to the preimage PreðRAH

ðSj;AH; sk�jÞÞ or as a strict subset in cases where one may be
only interested in computing a subset of the complete reach–

avoid set. Second, the computation of the Pre operator in
general involves the in-
version of the transition
relation F, which can be a
nontrivial task. In the
“Applications” section, it
will be illustrated through
examples how this com-
putation can be performed
for discrete transitions that
do not depend on the con-
tinuous state as well as in
certain cases where there
is dependence on the con-
tinuous state.

For applications where the reachability computation in
Algorithm 1 can be carried out in a tractable manner, a
controller satisfying the desired objectives can be designed
as follows. At time t0, the system is initialized inside Sk,
and the continuous control is chosen either as the fixed
feedback law used to compute the set RAHðSk�1;AH ; s1Þ

Mode 1 

Mode 2 

Mode 1

Mode 2

σ 1 σ 2

σ 1 σ 2

R1

R 2

R1

R 2

A1

A2

A1

A2

RARA1(R1, A1, t2)

RARA2(R2, A2, t2)

Pre(RARAH(RH, AH, t2))

Figure 3. Reach–avoid sets for hybrid systems are constructed
by first determining continuous reachable sets in each mode
and then combining these sets with switching, as described in
Algorithm 1.

•
Algorithm 1. Computation of hybrid
reach–avoid set.

Require: RH, AH � Q 3 Rn, s1, . . . , sk

1: S0 ( RH

2: for j ¼ 0 to k� 2 do

3: Choose Sjþ1 � Pre(RAH(Sj , A
H, sk�j))

4: end for

5: Sk (RAH(Sk�1, AH , s1)

6: return Sk.
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or as the optimal control synthesized according to (4). This
ensures that the system state is driven inside Sk�1 within s1

time units while avoiding the set AH . Once this occurs,
there exists, by the definition of the set Sk�1, a choice of
discrete control to switch the system state into the set
RAHðSk�2;AH ; s2Þ. Specifically, for a given ðq; xÞ 2 Sk�1,
the discrete control can be chosen from the set

r 2 R : (F(q, x, r), x) 2 RAH(Sk�2, AH, s2)
� �

:

Once the system state enters RAH(Sk�2, AH, s2), a continu-
ous control can be chosen so as to drive the system state into
Sk�2, and the process repeats until S0 ¼ RH is reached.

It can be observed that the performance of the control-
ler obtained from this design procedure will be dependent
on the accuracy of the continuous-time reachability calcu-
lations. As discussed in [35], the accuracy of the numerical
solutions obtained from the Level Set Toolbox is directly
related to the size of the discrete grid on which the compu-
tation is carried out. For applications requiring stringent
performance guarantees, conservative approximations of
the reach–avoid sets can be obtained when bounds on the
numerical errors are available.

To close this section, we remark that in digital control
applications where the controls can only be exerted at sam-
pling instants, a possible approach is to discretize the

continuous input range of u and reduce the problem to a
selection of discrete input levels and switching controls at
sampling instants [10]. This approach is briefly discussed
in the “Applications: Synthesis of Robust Motion Control
Policies” section.

Applications
In this section, we will describe several application exam-
ples where the theoretical techniques outlined in the
preceding sections have been used to design and verify
control schemes for complex systems. These examples
have been chosen to illustrate the power and flexibility of
reachability analysis in system verification and controller
design and synthesis. Because of space constraints, each
example is covered briefly, and the reader is encouraged to
review the cited articles for more detail.

Aerobatic Maneuver Design and Execution
The first example shows the reachability-based techniques
applied to the design of guaranteed safe aerobatic maneu-
vers [22]. In this work, reachability analysis was used to
design and implement a backflip maneuver for a quadrotor
helicopter (Figure 4), part of the Stanford Testbed of
Autonomous Rotorcraft for Multi-Agent Control (STAR-
MAC). Reachable sets were used to guarantee that the
quadrotor would be able to safely complete the backflip
even under worst-case disturbances.

Reachable Sets for Attainability and Safety
Since the quadrotor’s propellors cannot generate negative
thrust, the motors must be turned off during inverted flight.
As a result, the backflip was divided into three modes as
shown in Figure 5: 1) impulse, in which the rotation of the
vehicle is initialized; 2) drift, where the vehicle freely rotates
and falls under gravity; and 3) recovery, which brings the
vehicle to a controlled hover condition. For ease of analysis
and visualization, the quadrotor’s continuous dynamics was
decoupled into the rotational state space, which was ana-
lyzed to ensure attainability, and the vertical state space,
which was analyzed to ensure safety. This application can
thus be viewed as a special case of the hybrid control prob-
lem described in the “Reachability: Hybrid System Reach-
ability and Control” section, with a sequence of three modes
and two discrete switches occurring between the impulse
and drift and drift and recovery modes.

For this particular example, Algorithm 1 is initialized
using the final target set R3. The continuous-time reach–

avoid set calculation is decoupled into a capture set compu-
tation in the rotational state space and an avoid set compu-
tation in the vertical state space under a particular choice of
closed-loop controller for each mode. Details of the avoid
set computations are omitted here, but the reader is encour-
aged to refer to [22] for more information. The preimage of
a set in mode i of the mode sequence is simply the same set
in both mode i and i� 1, resulting in a simple computation
for the Pre operator. The resulting capture sets are shown in

Figure 4. STARMAC quadrotor performing an autonomous
backflip maneuver.

Recovery Drift Impulse

Figure 5. The backflip maneuver broken into three modes. The
vehicle travels from right to left, spinning clockwise. The size of
each arrow indicates the relative thrust from each rotor.
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Figure 6. (Calculating these sets using the Level Set Toolbox
on a standard laptop computer, e.g., 2-GHz dual-core CPU
and 4-GB RAM, took at most a few minutes of computation
time.) In Figure 6,R(R3, s3) is the set in the recovery mode,
R(R2, s2) is the set in the drift mode, and R(R1, s1) is the
capture set in the impulse mode. Using the procedures
described in the “Reachability: Hybrid System Reachability
and Control” section, a provably safe switching controller
can be designed for the backflip maneuver.

Results
Figure 6 shows the (/, _/) trajectory of three example
experimental validations through the designed capture sets
for the backflip maneuver. As the figure illustrates, the tra-
jectories are contained within the capture sets, and the
switches between the maneuvers are contained within each
of their goal regions. Video of the backflip maneuver being
successfully performed by the STARMAC vehicle can be
viewed at http://hybrid.eecs.berkeley.edu/aerobatics.html.

Synthesis of Robust Motion Control Policies
Another example is the application of reachability tools to the
synthesis of motion control policies that are robust to
bounded disturbances [10]. In this case, we consider a prob-
lem where the task specification is to generate a state feedback
policy that steers the robot into a set of desired target configu-
rations R � Rn using a finite set of high-level maneuvers Q
while avoiding a set of unsafe configurations A � Rn, subject
to worst-case bounds on run-time uncertainties (e.g., model
inaccuracies, actuator noise, and environment disturbances).
For practical implementation, the feedback policy selects
maneuvers based on sampled measurements of the system
state obtained at T time units apart.

This can be viewed as another special case of the hybrid
control problem described in the “Reachability: Hybrid
System Reachability and Control” section, where the target
and unsafe sets are the product of the sets R and A in each
mode i 2 Q, while the timing specifications are given by
s0 ¼ s1 ¼ � � � ¼ sk�1 ¼ T . Under the assumption that a
switch can be taken from mode i to any other mode j 2 Q, the
computation of Pre(S) in each mode is simplified to

S
i2Q Si,

where Si is the component of S in mode i. Thus, the reach–

avoid set over a time interval ½0, kT� is identical for each mode
of the system and can be obtained using Algorithm 2.

It should be noted that the various uncertainties are
accounted for in the computation of the set RAi(Sj, A, T),
which is carried out according to the system dynamics (1),
subject to bounds on the disturbance parameter.

As described in the “Reachability: Hybrid System
Reachability and Control” section, the result of this reach-
ability calculation also gives an explicit representation of
the feedback policy for choosing the switching controls.
Specifically, given a state measurement x(kT), the mini-
mum number of time
steps needed to reach R
while avoiding A can be
computed by iterating
through the reach–avoid
sets and finding the small-
est set Sj containing x(kT).
By definition of Sj, there
exists some maneuver i
such that x(kT) 2RAi

(Sj�1, A, T). Then, choos-
ing of i guarantees that
the state trajectory will
enter Sj�1 in one sam-
pling interval. In repeat-
ing this procedure, the
system state is steered through successively smaller reach–

avoid sets, until the target set is attained.
For conceptual illustration, this approach is applied to

the problem of controlling STARMAC to some neighbor-
hood of the origin in the two-dimensional (2-D) plane,
while satisfying hard velocity bounds, and subject to model
uncertainties and motor noise. Under a previously de-
signed inner control loop, the position–velocity dynamics

0 1 2 3 4 5 6

–8

–6

–4

–2

0

2

R1

R3

φ

φ⋅ R(R2, τ2)R(R3, τ3)

R(R1, τ1)

R2

Figure 6. Three experimental validations (solid, dash, and dash-
dot lines) of the backflip maneuver overlaid on the composite
reach sets plotted in the rotational state space. The maneuver
begins in RðR1; s1Þ and ends in R3. The transitions from the
impulse to drift mode are shown as black diamonds, and the
transitions from the drift to the recovery mode are indicated by
the black squares.

•
Algorithm 2. Computation of exact finite
horizon reach–avoid set.

Require: R, A � Rn, T > 0

1: S0 ( R

2: for j ¼ 0 to k� 1 do

3: Sjþ1 (
S

i2QRA
i(Sj , A, T) [ Sj

4: end for

5: return Sk.
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disturbances.
•
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of the STARMAC in the x and y directions can be reason-
ably modeled as decoupled double integrators. In this
application, the modes of the system are used to represent
discrete choices of roll and pitch angles, which affects the
vehicle acceleration in the x and y directions. Figure 7
shows a plot of the reach–avoid sets computed using Algo-
rithm 2 in the position–velocity space. The corresponding
feedback policy over a 2.5-s time horizon is implemented
onboard the quadrotor, and an experimental trajectory is

shown in Figure 8. It can be seen that the vehicle indeed
achieves the desired objectives in both the x and y direc-
tions within the time horizon of interest, despite disturb-
ance effects.

Reachability Control for Multistage Games
Finally, reachability-based control design can also be used
for decision making and control in multistage games. The
following example shows how reachability tools can be
applied to the game of capture the flag, a challenging
adversarial scenario where reachability analysis can be
used to guide human agents [33].

The simplest version of capture the flag involves a single
attacker first attempting to reach a flag region and then
subsequently returning to a return region, as seen in Fig-
ure 9. The attacker wins by completing these objectives in
sequence, and the defender wins by preventing this, either
by directly capturing the attacker (coming within some
radius of the attacker) or simply blocking the attacker
through the threat of capture.

This game can be modeled as a two-mode hybrid system,
where the modes encode different stages of the game, and
the continuous states encode the joint configuration of the
two players. A switch from the first stage to the second stage
is enabled by the attacker position entering the flag zone.

The hybrid reachability procedure given in the
“Reachability: Hybrid System Reachability and Control”
section can be performed using the return region in the sec-
ond stage as the final target and the capture zone as
the unsafe region for the attacker in both stages. For the
discrete switch, the preimage of the reach–avoid set in the
second stage is computed by taking its intersection with
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configurations where the attacker is inside the flag region.
The result of the reachability analysis produces the set of
winning initial configurations for the attacker. Moreover,
since the game is zero sum, the complement of this set is the
configurations where victory is assured for the defender.
Under an optimal control framework, the control inputs
ensuring victory for either player can be directly synthesized
from the value functions produced by the Hamilton–Jacobi
calculation, giving a complete solution to the problem.

The inputs and reach–avoid sets can be used for auto-
mated agents, but they are also natural tools for assisting
a human playing the game. The optimal control inputs
can be used to guide the player, and the reach–avoid sets
are intuitive visual tools for displaying game information.
Although the actual reach–avoid sets are calculated in
four dimensions (4-D), a 2-D visualization can be created
by fixing the player’s own location and then showing a
slice of the 4-D reach–avoid set. Figure 10 shows the
attacking player’s perspective, where the attacker position
is fixed, and the sets show all the locations the defender
can start from to prevent the attacker from reaching its
objective. In this case, the regions show defender victory
conditions for preventing the attacker from reaching just
the flag (FD), just the return zone (RD), and playing the
full game (WD).

Figure 10 also shows the simulation results showing tra-
jectories for the players as they follow the computed opti-
mal inputs. Figure 10(b) shows the attacker being blocked
and captured, and Figure 10(d) shows the attacker success-
fully reaching the flag and then returning.

By posing planning for capture the flag as a reachability
problem, control inputs for each player can be found that
guarantee victory if victory is possible. Currently, the
utility of the reachability analysis is constrained by compu-
tational limits as the state space expands exponentially
with the number of continuous states. Efforts are under-
way to find approximations that would allow for larger
games to be analyzed.

Conclusions and New Vistas
The applications discussed here and in other works illus-
trate the potential of reachability-based control design, a
potential that is only beginning to be realized. These tech-
niques give a control designer a range of tools for verifying
and designing control systems with safety properties that
are guaranteed up to the limits of the models used. The
tools and applications discussed above show how reach-
ability analysis can be used to verify mode switching for
complex automated maneuvers, design mode sequences
for planning scenarios,
and be used for control
and analysis in complex
adversarial scenarios. Re-
cent progress in tools for
efficient reachability anal-
ysis has greatly expanded
the potential scope of
hybrid reachability’s use
in control and verifica-
tion, with many possi-
bilities for the future.

An area where reach-
ability analysis can make
a substantial impact is in
the integration of reach–

avoid sets with environment sensing and obstacle avoid-
ance. By treating maneuvers and their corresponding
reach–avoid sets as control primitives, techniques such as
those described in the “Applications: Synthesis of Robust
Motion Control Policies” section can be used to quickly gen-
erate safe, feasible trajectories for robotic vehicles. A project
is underway to apply these methods to a quadrotor UAV
being operated in a complex, obstacle-rich environment by
a remote human operator. In this project, the human is gen-
erally responsible for the operation of the UAV while auto-
mated controllers are used to fly the UAV safely through
tight spaces and difficult maneuvers.
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This also highlights another important advantage of
reachability analysis: reachable sets are attractive and
intuitive tools for assisting human operators. Tools are
also being developed for complex situations with teams
of multiple human and robotic agents. A significant part
of this research will involve field experiments using a
smartphone-based capture-the-flag game system currently
being developed.

Finally, another project that is being pursued examines
the use of reachability-based tools for robust machine
learning. While many commonly used machine-learning
algorithms demonstrate excellent performance in robotic
tasks, the convergence guarantees associated with these
algorithms are typically asymptotic in nature; few have
guarantees about their robustness under more realistic
assumptions of limited sample sizes. This is particularly
problematic when it is necessary to run these algorithms
online, for example, in a reinforcement learning scenario

where a robot is simulta-
neously learning a model
and must make decisions
about how to act in that
given model. In such a
scenario, a spurious sam-
ple could cause the robot’s
model to temporarily be
incorrect, causing it to
take an unsafe or even
catastrophic action.

This situation may be
avoided by combining
machine-learning tech-
niques with reachability-
style tools that make use

of physics-based models and reasonable assumptions
about worst-case errors. By doing so, it is hoped that the
resulting toolset will provide the same level of excellent
performance common to machine-learning algorithms,
while simultaneously providing the kinds of guarantees
about safety that are the essence of the reachability-based
techniques described in this article.

The ability to generate safety and attainability guar-
antees within model error for control of complex robotic
systems is a powerful tool. Such guarantees could be
used in practice to quickly rule out large parts of the sys-
tem state space as safe and to focus detailed simulation
and testing on scenarios that operate close to the
boundary of the safe set, leading to shorter design and
testing times. Such methods could increase the number
of scenarios in which robotic and other automation
technology can be used, particularly in safety-critical
areas where unexpected or unpredicted robotic behavior
might result in human injury. By using such formal
methods, designers can have increased confidence that
the robotic systems they create will always function in a
safe, reliable manner.
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